\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise

Abstract Related Papers Cited by
  • In this work, we analyze the stochastic fractional Ginzburg-Landau equation with multiplicative noise in two spatial dimensions with a particular interest in the asymptotic behavior of its solutions. To get started, we first transfer the stochastic fractional Ginzburg-Landau equation into a random equation whose solutions generate a random dynamical system. The existence of a random attractor for the resulting random dynamical system is explored, and the Hausdorff dimension of the random attractor is estimated.
    Mathematics Subject Classification: 37L55, 60H15, 35Q56.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynamics and Differential Equations, 9 (1997), 307-341.doi: 10.1007/BF02219225.

    [2]

    H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.doi: 10.1007/BF01193705.

    [3]

    A. Debussche, Hausdorff dimension of a random invariant set, J. Math. Pure Appl., 77 (1998), 967-988.doi: 10.1016/S0021-7824(99)80001-4.

    [4]

    J. Dong and M. Xu, Space-time fractional Schrödinger equation with time-independent potentials, J. Math. Anal. Appl., 344 (2008), 1005-1017.doi: 10.1016/j.jmaa.2008.03.061.

    [5]

    C. W. Gardiner, Handbooks of Stochastic Methods for Physics, Chemistry and Natural Sciences, Springer-Verlag, Berlin, 1983.doi: 10.1007/978-3-662-02377-8.

    [6]

    B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation, Commun. Partial Differential Equations, 36 (2011), 247-255.doi: 10.1080/03605302.2010.503769.

    [7]

    B. Guo and M. Zeng, Solutions for the fractional Landau-Lifshitz equation, J. Math. Anal. Appl., 361 (2010), 131-138.doi: 10.1016/j.jmaa.2009.09.009.

    [8]

    S. Holm and S. P. Näsholm, Comparison of fractional wave equations for power law attenuation in ultrasound and elastography, Ultrasound Med. Biol., 40 (2014), 695-703.doi: 10.1016/j.ultrasmedbio.2013.09.033.

    [9]

    N. Laskin, Fractional Schrödinger equation, Physical Review E, 66 (2002), 056108, 7pp.doi: 10.1103/PhysRevE.66.056108.

    [10]

    H. Lu, S. Lü and Z. Feng, Asymptotic dynamics of 2d fractional complex Ginzburg-Landau equation, Int. J. Bifur. Chaos, 23 (2013), 1350202, 12pp.doi: 10.1142/S0218127413502027.

    [11]

    H. Lu and S. Lü, Random attractor for fractional Ginzburg-Landau equation with multiplicative noise, Taiwanese J. Math., 18 (2014), 435-450.doi: 10.11650/tjm.18.2014.3053.

    [12]

    R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (200), 1-77. doi: 10.1016/S0370-1573(00)00070-3.

    [13]

    E. W. Montroll and M. F. Shlesinger, On the wonderful world of random walks, Nonequilibrium phenomena, II, North-Holland, Amsterdam, 1984, 1-121.

    [14]

    R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Solidi. B, 133 (1986), 425-430.doi: 10.1002/pssb.2221330150.

    [15]

    L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162.

    [16]

    X. Pu and B. Guo, Global weak solutions of the fractional Landau-Lifshitz-Maxwell equation, J. Math. Anal. Appl., 372 (2010), 86-98.doi: 10.1016/j.jmaa.2010.06.035.

    [17]

    X. Pu and B. Guo, Well-posedness and dynamics for the fractional Ginzburg-Landau equation, Appl. Anal., 92 (2013), 318-334.doi: 10.1080/00036811.2011.614601.

    [18]

    A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos, 7 (1997), 753-764.doi: 10.1063/1.166272.

    [19]

    M. F. Shlesinger, G. M. Zaslavsky and J. Klafter, Strange kinetics, Nature, 363 (1993), 31-37.doi: 10.1038/363031a0.

    [20]

    Y. Su and Z. Feng, Existence theory for an arbitrary order fractional differential equation with deviating argument, Acta Appl. Math., 118 (2012), 81-105.doi: 10.1007/s10440-012-9679-1.

    [21]

    V. E. Tarasov and G. M. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354 (2005), 249-261.doi: 10.1016/j.physa.2005.02.047.

    [22]

    R. Temam, Infinite Dimension Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988.doi: 10.1007/978-1-4684-0313-8.

    [23]

    S. Wheatcraft and M. Meerschaert, Fractional conservation of mass, Advances in Water Resources, 31 (2008), 1377-1381.doi: 10.1016/j.advwatres.2008.07.004.

    [24]

    G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Reprint of the 2005 original. Oxford University Press, Oxford, 2008.

    [25]

    G. M. Zaslavsky and M. Edelman, Weak mixing and anomalous kinetics along filamented surfaces, Chaos, 11 (2001), 295-305.doi: 10.1063/1.1355358.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(215) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return