March  2016, 21(2): 591-606. doi: 10.3934/dcdsb.2016.21.591

Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession

1. 

Department of Mathematics, School of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China

2. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL A1C 5S7

Received  August 2014 Revised  November 2014 Published  November 2015

This paper is devoted to the study of propagation phenomena for a two-species competitive reaction-diffusion model with seasonal succession in the monostable case. By appealing to theory of traveling waves and spreading speeds for monotone semiflows, we establish the existence of the minimal wave speed for rightward traveling waves and its coincidence with the rightward spreading speed. We also obtain a set of sufficient conditions for the spreading speed to be linearly determinate.
Citation: Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591
References:
[1]

P. J. DuBowy, Waterfowl communities and seasonal environments: Temporal variabolity in interspecific competition, Ecology, 69 (1988), 1439-1453. doi: 10.2307/1941641.

[2]

J. Fang and X.-Q. Zhao, Travelling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704. doi: 10.1137/140953939.

[3]

S. Gourley, R. Liu and J. Wu, Spatiotemporal distributions of migratory birds: Patchy models with delay, SIAM J. Appl. Dyn. Syst., 9 (2010), 589-610. doi: 10.1137/090767261.

[4]

S.-B. Hsu and X.-Q. Zhao, A Lotka-Volterra competition model with seasonal succession, J. Math. Biol., 64 (2012), 109-130. doi: 10.1007/s00285-011-0408-6.

[5]

S. S. Hu and A. J. Tessier, Seasonal succession and the strength of intra- and interspecific competition in a Daphnia assemblage, Ecology, 76 (1995), 2278-2294. doi: 10.2307/1941702.

[6]

M. A. Lewis, B. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), 219-233. doi: 10.1007/s002850200144.

[7]

X. Liang, Y. Yi and X.-Q. Zhao, Spreading speeds and travelling waves for periodic evolution systems, J. Differential Equations, 231 (2006), 57-77. doi: 10.1016/j.jde.2006.04.010.

[8]

X. Liang and X.-Q. Zhao, Asymptotic speeds of speed and travelling waves for monotone semiflows with application, Comm. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154.

[9]

E. Litchman and C. A. Klausmeier, Competition of phytoplankton under fluctuating light, Amer. Naturalist, 157 (2001), 170-187. doi: 10.1086/318628.

[10]

R. Peng and X.-Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession, Discrete. Contin. Dyn. Syst. (Ser. A), 33 (2013), 2007-2031. doi: 10.3934/dcds.2013.33.2007.

[11]

C. F. Steiner, A. S. Schwaderer, V. Huber, C. A. Klausmeier and E. Litchman, Periodically forced food chain dynamics: Model predictions and experimental validation, Ecology, 90 (2009), 3099-3107. doi: 10.1890/08-2377.1.

[12]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218. doi: 10.1007/s002850200145.

[13]

F. Zhang and X.-Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516. doi: 10.1016/j.jmaa.2006.01.085.

[14]

Y. Zhang and X.-Q. Zhao, Bistable travelling waves for a reaction and diffusion model with seasonal succession, Nonlinearity, 26 (2013), 691-709. doi: 10.1088/0951-7715/26/3/691.

show all references

References:
[1]

P. J. DuBowy, Waterfowl communities and seasonal environments: Temporal variabolity in interspecific competition, Ecology, 69 (1988), 1439-1453. doi: 10.2307/1941641.

[2]

J. Fang and X.-Q. Zhao, Travelling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704. doi: 10.1137/140953939.

[3]

S. Gourley, R. Liu and J. Wu, Spatiotemporal distributions of migratory birds: Patchy models with delay, SIAM J. Appl. Dyn. Syst., 9 (2010), 589-610. doi: 10.1137/090767261.

[4]

S.-B. Hsu and X.-Q. Zhao, A Lotka-Volterra competition model with seasonal succession, J. Math. Biol., 64 (2012), 109-130. doi: 10.1007/s00285-011-0408-6.

[5]

S. S. Hu and A. J. Tessier, Seasonal succession and the strength of intra- and interspecific competition in a Daphnia assemblage, Ecology, 76 (1995), 2278-2294. doi: 10.2307/1941702.

[6]

M. A. Lewis, B. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), 219-233. doi: 10.1007/s002850200144.

[7]

X. Liang, Y. Yi and X.-Q. Zhao, Spreading speeds and travelling waves for periodic evolution systems, J. Differential Equations, 231 (2006), 57-77. doi: 10.1016/j.jde.2006.04.010.

[8]

X. Liang and X.-Q. Zhao, Asymptotic speeds of speed and travelling waves for monotone semiflows with application, Comm. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154.

[9]

E. Litchman and C. A. Klausmeier, Competition of phytoplankton under fluctuating light, Amer. Naturalist, 157 (2001), 170-187. doi: 10.1086/318628.

[10]

R. Peng and X.-Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession, Discrete. Contin. Dyn. Syst. (Ser. A), 33 (2013), 2007-2031. doi: 10.3934/dcds.2013.33.2007.

[11]

C. F. Steiner, A. S. Schwaderer, V. Huber, C. A. Klausmeier and E. Litchman, Periodically forced food chain dynamics: Model predictions and experimental validation, Ecology, 90 (2009), 3099-3107. doi: 10.1890/08-2377.1.

[12]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218. doi: 10.1007/s002850200145.

[13]

F. Zhang and X.-Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516. doi: 10.1016/j.jmaa.2006.01.085.

[14]

Y. Zhang and X.-Q. Zhao, Bistable travelling waves for a reaction and diffusion model with seasonal succession, Nonlinearity, 26 (2013), 691-709. doi: 10.1088/0951-7715/26/3/691.

[1]

Wentao Meng, Yuanxi Yue, Manjun Ma. The minimal wave speed of the Lotka-Volterra competition model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021265

[2]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[3]

Shuang-Ming Wang, Zhaosheng Feng, Zhi-Cheng Wang, Liang Zhang. Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2005-2034. doi: 10.3934/cpaa.2021145

[4]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[5]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[6]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[7]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[8]

Mohammed Mesk, Ali Moussaoui. On an upper bound for the spreading speed. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021210

[9]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[10]

Elena Trofimchuk, Manuel Pinto, Sergei Trofimchuk. On the minimal speed of front propagation in a model of the Belousov-Zhabotinsky reaction. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1769-1781. doi: 10.3934/dcdsb.2014.19.1769

[11]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[12]

Aiyong Chen, Chi Zhang, Wentao Huang. Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022048

[13]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[14]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[15]

Peixuan Weng. Spreading speed and traveling wavefront of an age-structured population diffusing in a 2D lattice strip. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 883-904. doi: 10.3934/dcdsb.2009.12.883

[16]

Juliette Bouhours, Grégroie Nadin. A variational approach to reaction-diffusion equations with forced speed in dimension 1. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1843-1872. doi: 10.3934/dcds.2015.35.1843

[17]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[18]

Hans Weinberger. On sufficient conditions for a linearly determinate spreading speed. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2267-2280. doi: 10.3934/dcdsb.2012.17.2267

[19]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks and Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[20]

Linghai Zhang. Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2405-2450. doi: 10.3934/dcds.2014.34.2405

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (128)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]