• Previous Article
    Destabilization threshold curves for diffusion systems with equal diffusivity under non-diagonal flux boundary conditions
  • DCDS-B Home
  • This Issue
  • Next Article
    Growth of single phytoplankton species with internal storage in a water column
March  2016, 21(2): 621-639. doi: 10.3934/dcdsb.2016.21.621

Competition between two similar species in the unstirred chemostat

1. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710119

2. 

Institute for Mathematical Sciences, Renmin University of China, Haidian District, Beijing, 100872

Received  January 2015 Revised  May 2015 Published  November 2015

This paper deals with the competition between two similar species in the unstirred chemostat. Due to the strict competition of the unstirred chemostat model, the global dynamics of the system is attained by analyzing the equilibria and their stability. It turns out that the dynamics of the system essentially depends upon certain function of the growth rate. Moreover, one of the semi-trivial stationary solutions or the unique coexistence steady state is a global attractor under certain conditions. Biologically, the results indicate that it is possible for the mutant to force the extinction of resident species or to coexist with it.
Citation: Hua Nie, Yuan Lou, Jianhua Wu. Competition between two similar species in the unstirred chemostat. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 621-639. doi: 10.3934/dcdsb.2016.21.621
References:
[1]

F. Castella and S. Madec, Coexistence phenomena and global bifurcation structure in a chemostat-like model with species-dependent diffusion rates,, J. Math. Biol., 68 (2014), 377.  doi: 10.1007/s00285-012-0633-7.  Google Scholar

[2]

L. Dung and H. L. Smith, A parabolic system modeling microbial competition in an unmixed bio-reactor,, J. Differential Equations, 130 (1996), 59.  doi: 10.1006/jdeq.1996.0132.  Google Scholar

[3]

G. Guo, J. H. Wu and Y. Wang, Bifurcation from a double eigenvalue in the unstirred chemostat,, Appl. Anal., 92 (2013), 1449.  doi: 10.1080/00036811.2012.683786.  Google Scholar

[4]

P. Hess, Periodic Parabolic Boundary Value Problems and Positivity,, Longman Scientific & Technical, (1991).   Google Scholar

[5]

S. B. Hsu, H. L. Smith and P. Waltman, Dynamics of competition in the unstirred Chemostat,, Canad. Appl. Math. Quart., 2 (1994), 461.   Google Scholar

[6]

S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred Chemostat,, SIAM J. Appl. Math., 53 (1993), 1026.  doi: 10.1137/0153051.  Google Scholar

[7]

V. Hutson, Y. Lou, K. Mischaikow and P. Poláčik, Competing species near a degenerate limit,, SIAM J. Math. Anal., 35 (2003), 453.  doi: 10.1137/S0036141002402189.  Google Scholar

[8]

Y. Lou, S. Martinez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model,, J. Differential Equations, 230 (2006), 720.  doi: 10.1016/j.jde.2006.04.005.  Google Scholar

[9]

H. Nie and J. H. Wu, Positive solutions of a competition model for two resources in the unstirred chemostat,, J. Math. Anal. Appl., 355 (2009), 231.  doi: 10.1016/j.jmaa.2009.01.045.  Google Scholar

[10]

H. Nie and J. H. Wu, Uniqueness and stability for coexistence solutions of the unstirred chemostat model,, Appl. Anal., 89 (2010), 1141.  doi: 10.1080/00036811003717954.  Google Scholar

[11]

H. Nie and J. H. Wu, The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, Discrete Contin. Dyn. Syst., 32 (2012), 303.  doi: 10.3934/dcds.2012.32.303.  Google Scholar

[12]

H. Nie and J. H. Wu, Multiple coexistence solutions to the unstirred chemostat model with plasmid and toxin,, European J. Appl. Math., 25 (2014), 481.  doi: 10.1017/S0956792514000096.  Google Scholar

[13]

H. Nie, W. Xie and J. H. Wu, Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor,, Comm. Pure Appl. Anal., 12 (2013), 1279.  doi: 10.3934/cpaa.2013.12.1279.  Google Scholar

[14]

T. Kato, Perturbation Theory of Linear Operators,, Springer, (1966).   Google Scholar

[15]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs 41, (1995).   Google Scholar

[16]

H. L. Smith and P. Waltman, The Theory of the Chemostat,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[17]

J. W. H. So and P. Waltman, A nonlinear boundary value problem arising from competition in the chemostat,, Appl. Math. Comput., 32 (1989), 169.  doi: 10.1016/0096-3003(89)90092-1.  Google Scholar

[18]

H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755.  doi: 10.1007/BF00173267.  Google Scholar

[19]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, Nonlinear Anal., 39 (2000), 817.  doi: 10.1016/S0362-546X(98)00250-8.  Google Scholar

[20]

J. H. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, SIAM J. Math. Anal., 38 (2007), 1860.  doi: 10.1137/050627514.  Google Scholar

[21]

J. H. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat,, J. Differential Equations, 172 (2001), 300.  doi: 10.1006/jdeq.2000.3870.  Google Scholar

show all references

References:
[1]

F. Castella and S. Madec, Coexistence phenomena and global bifurcation structure in a chemostat-like model with species-dependent diffusion rates,, J. Math. Biol., 68 (2014), 377.  doi: 10.1007/s00285-012-0633-7.  Google Scholar

[2]

L. Dung and H. L. Smith, A parabolic system modeling microbial competition in an unmixed bio-reactor,, J. Differential Equations, 130 (1996), 59.  doi: 10.1006/jdeq.1996.0132.  Google Scholar

[3]

G. Guo, J. H. Wu and Y. Wang, Bifurcation from a double eigenvalue in the unstirred chemostat,, Appl. Anal., 92 (2013), 1449.  doi: 10.1080/00036811.2012.683786.  Google Scholar

[4]

P. Hess, Periodic Parabolic Boundary Value Problems and Positivity,, Longman Scientific & Technical, (1991).   Google Scholar

[5]

S. B. Hsu, H. L. Smith and P. Waltman, Dynamics of competition in the unstirred Chemostat,, Canad. Appl. Math. Quart., 2 (1994), 461.   Google Scholar

[6]

S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred Chemostat,, SIAM J. Appl. Math., 53 (1993), 1026.  doi: 10.1137/0153051.  Google Scholar

[7]

V. Hutson, Y. Lou, K. Mischaikow and P. Poláčik, Competing species near a degenerate limit,, SIAM J. Math. Anal., 35 (2003), 453.  doi: 10.1137/S0036141002402189.  Google Scholar

[8]

Y. Lou, S. Martinez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model,, J. Differential Equations, 230 (2006), 720.  doi: 10.1016/j.jde.2006.04.005.  Google Scholar

[9]

H. Nie and J. H. Wu, Positive solutions of a competition model for two resources in the unstirred chemostat,, J. Math. Anal. Appl., 355 (2009), 231.  doi: 10.1016/j.jmaa.2009.01.045.  Google Scholar

[10]

H. Nie and J. H. Wu, Uniqueness and stability for coexistence solutions of the unstirred chemostat model,, Appl. Anal., 89 (2010), 1141.  doi: 10.1080/00036811003717954.  Google Scholar

[11]

H. Nie and J. H. Wu, The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, Discrete Contin. Dyn. Syst., 32 (2012), 303.  doi: 10.3934/dcds.2012.32.303.  Google Scholar

[12]

H. Nie and J. H. Wu, Multiple coexistence solutions to the unstirred chemostat model with plasmid and toxin,, European J. Appl. Math., 25 (2014), 481.  doi: 10.1017/S0956792514000096.  Google Scholar

[13]

H. Nie, W. Xie and J. H. Wu, Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor,, Comm. Pure Appl. Anal., 12 (2013), 1279.  doi: 10.3934/cpaa.2013.12.1279.  Google Scholar

[14]

T. Kato, Perturbation Theory of Linear Operators,, Springer, (1966).   Google Scholar

[15]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs 41, (1995).   Google Scholar

[16]

H. L. Smith and P. Waltman, The Theory of the Chemostat,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[17]

J. W. H. So and P. Waltman, A nonlinear boundary value problem arising from competition in the chemostat,, Appl. Math. Comput., 32 (1989), 169.  doi: 10.1016/0096-3003(89)90092-1.  Google Scholar

[18]

H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755.  doi: 10.1007/BF00173267.  Google Scholar

[19]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, Nonlinear Anal., 39 (2000), 817.  doi: 10.1016/S0362-546X(98)00250-8.  Google Scholar

[20]

J. H. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, SIAM J. Math. Anal., 38 (2007), 1860.  doi: 10.1137/050627514.  Google Scholar

[21]

J. H. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat,, J. Differential Equations, 172 (2001), 300.  doi: 10.1006/jdeq.2000.3870.  Google Scholar

[1]

Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201

[2]

Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739

[3]

Hua Nie, Feng-Bin Wang. Competition for one nutrient with recycling and allelopathy in an unstirred chemostat. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2129-2155. doi: 10.3934/dcdsb.2015.20.2129

[4]

Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences & Engineering, 2016, 13 (4) : 631-652. doi: 10.3934/mbe.2016012

[5]

Willard S. Keeran, Patrick D. Leenheer, Sergei S. Pilyugin. Feedback-mediated coexistence and oscillations in the chemostat. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 321-351. doi: 10.3934/dcdsb.2008.9.321

[6]

Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169

[7]

Hua Nie, Sze-bi Hsu, Jianhua Wu. A competition model with dynamically allocated toxin production in the unstirred chemostat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1373-1404. doi: 10.3934/cpaa.2017066

[8]

Hua Nie, Wenhao Xie, Jianhua Wu. Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1279-1297. doi: 10.3934/cpaa.2013.12.1279

[9]

Hai-Xia Li, Jian-Hua Wu, Yan-Ling Li, Chun-An Liu. Positive solutions to the unstirred chemostat model with Crowley-Martin functional response. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2951-2966. doi: 10.3934/dcdsb.2017128

[10]

Jianyu Chen. On essential coexistence of zero and nonzero Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4149-4170. doi: 10.3934/dcds.2012.32.4149

[11]

Hua Nie, Jianhua Wu. The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 303-329. doi: 10.3934/dcds.2012.32.303

[12]

Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319

[13]

Charlotte Beauthier, Joseph J. Winkin, Denis Dochain. Input/state invariant LQ-optimal control: Application to competitive coexistence in a chemostat. Evolution Equations & Control Theory, 2015, 4 (2) : 143-158. doi: 10.3934/eect.2015.4.143

[14]

Sondes khabthani, Lassaad Elasmi, François Feuillebois. Perturbation solution of the coupled Stokes-Darcy problem. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 971-990. doi: 10.3934/dcdsb.2011.15.971

[15]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[16]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[17]

Dimitri Breda, Sara Della Schiava. Pseudospectral reduction to compute Lyapunov exponents of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2727-2741. doi: 10.3934/dcdsb.2018092

[18]

Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671

[19]

Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631

[20]

Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]