• Previous Article
    Destabilization threshold curves for diffusion systems with equal diffusivity under non-diagonal flux boundary conditions
  • DCDS-B Home
  • This Issue
  • Next Article
    Growth of single phytoplankton species with internal storage in a water column
March  2016, 21(2): 621-639. doi: 10.3934/dcdsb.2016.21.621

Competition between two similar species in the unstirred chemostat

1. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710119

2. 

Institute for Mathematical Sciences, Renmin University of China, Haidian District, Beijing, 100872

Received  January 2015 Revised  May 2015 Published  November 2015

This paper deals with the competition between two similar species in the unstirred chemostat. Due to the strict competition of the unstirred chemostat model, the global dynamics of the system is attained by analyzing the equilibria and their stability. It turns out that the dynamics of the system essentially depends upon certain function of the growth rate. Moreover, one of the semi-trivial stationary solutions or the unique coexistence steady state is a global attractor under certain conditions. Biologically, the results indicate that it is possible for the mutant to force the extinction of resident species or to coexist with it.
Citation: Hua Nie, Yuan Lou, Jianhua Wu. Competition between two similar species in the unstirred chemostat. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 621-639. doi: 10.3934/dcdsb.2016.21.621
References:
[1]

F. Castella and S. Madec, Coexistence phenomena and global bifurcation structure in a chemostat-like model with species-dependent diffusion rates,, J. Math. Biol., 68 (2014), 377.  doi: 10.1007/s00285-012-0633-7.  Google Scholar

[2]

L. Dung and H. L. Smith, A parabolic system modeling microbial competition in an unmixed bio-reactor,, J. Differential Equations, 130 (1996), 59.  doi: 10.1006/jdeq.1996.0132.  Google Scholar

[3]

G. Guo, J. H. Wu and Y. Wang, Bifurcation from a double eigenvalue in the unstirred chemostat,, Appl. Anal., 92 (2013), 1449.  doi: 10.1080/00036811.2012.683786.  Google Scholar

[4]

P. Hess, Periodic Parabolic Boundary Value Problems and Positivity,, Longman Scientific & Technical, (1991).   Google Scholar

[5]

S. B. Hsu, H. L. Smith and P. Waltman, Dynamics of competition in the unstirred Chemostat,, Canad. Appl. Math. Quart., 2 (1994), 461.   Google Scholar

[6]

S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred Chemostat,, SIAM J. Appl. Math., 53 (1993), 1026.  doi: 10.1137/0153051.  Google Scholar

[7]

V. Hutson, Y. Lou, K. Mischaikow and P. Poláčik, Competing species near a degenerate limit,, SIAM J. Math. Anal., 35 (2003), 453.  doi: 10.1137/S0036141002402189.  Google Scholar

[8]

Y. Lou, S. Martinez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model,, J. Differential Equations, 230 (2006), 720.  doi: 10.1016/j.jde.2006.04.005.  Google Scholar

[9]

H. Nie and J. H. Wu, Positive solutions of a competition model for two resources in the unstirred chemostat,, J. Math. Anal. Appl., 355 (2009), 231.  doi: 10.1016/j.jmaa.2009.01.045.  Google Scholar

[10]

H. Nie and J. H. Wu, Uniqueness and stability for coexistence solutions of the unstirred chemostat model,, Appl. Anal., 89 (2010), 1141.  doi: 10.1080/00036811003717954.  Google Scholar

[11]

H. Nie and J. H. Wu, The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, Discrete Contin. Dyn. Syst., 32 (2012), 303.  doi: 10.3934/dcds.2012.32.303.  Google Scholar

[12]

H. Nie and J. H. Wu, Multiple coexistence solutions to the unstirred chemostat model with plasmid and toxin,, European J. Appl. Math., 25 (2014), 481.  doi: 10.1017/S0956792514000096.  Google Scholar

[13]

H. Nie, W. Xie and J. H. Wu, Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor,, Comm. Pure Appl. Anal., 12 (2013), 1279.  doi: 10.3934/cpaa.2013.12.1279.  Google Scholar

[14]

T. Kato, Perturbation Theory of Linear Operators,, Springer, (1966).   Google Scholar

[15]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs 41, (1995).   Google Scholar

[16]

H. L. Smith and P. Waltman, The Theory of the Chemostat,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[17]

J. W. H. So and P. Waltman, A nonlinear boundary value problem arising from competition in the chemostat,, Appl. Math. Comput., 32 (1989), 169.  doi: 10.1016/0096-3003(89)90092-1.  Google Scholar

[18]

H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755.  doi: 10.1007/BF00173267.  Google Scholar

[19]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, Nonlinear Anal., 39 (2000), 817.  doi: 10.1016/S0362-546X(98)00250-8.  Google Scholar

[20]

J. H. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, SIAM J. Math. Anal., 38 (2007), 1860.  doi: 10.1137/050627514.  Google Scholar

[21]

J. H. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat,, J. Differential Equations, 172 (2001), 300.  doi: 10.1006/jdeq.2000.3870.  Google Scholar

show all references

References:
[1]

F. Castella and S. Madec, Coexistence phenomena and global bifurcation structure in a chemostat-like model with species-dependent diffusion rates,, J. Math. Biol., 68 (2014), 377.  doi: 10.1007/s00285-012-0633-7.  Google Scholar

[2]

L. Dung and H. L. Smith, A parabolic system modeling microbial competition in an unmixed bio-reactor,, J. Differential Equations, 130 (1996), 59.  doi: 10.1006/jdeq.1996.0132.  Google Scholar

[3]

G. Guo, J. H. Wu and Y. Wang, Bifurcation from a double eigenvalue in the unstirred chemostat,, Appl. Anal., 92 (2013), 1449.  doi: 10.1080/00036811.2012.683786.  Google Scholar

[4]

P. Hess, Periodic Parabolic Boundary Value Problems and Positivity,, Longman Scientific & Technical, (1991).   Google Scholar

[5]

S. B. Hsu, H. L. Smith and P. Waltman, Dynamics of competition in the unstirred Chemostat,, Canad. Appl. Math. Quart., 2 (1994), 461.   Google Scholar

[6]

S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred Chemostat,, SIAM J. Appl. Math., 53 (1993), 1026.  doi: 10.1137/0153051.  Google Scholar

[7]

V. Hutson, Y. Lou, K. Mischaikow and P. Poláčik, Competing species near a degenerate limit,, SIAM J. Math. Anal., 35 (2003), 453.  doi: 10.1137/S0036141002402189.  Google Scholar

[8]

Y. Lou, S. Martinez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model,, J. Differential Equations, 230 (2006), 720.  doi: 10.1016/j.jde.2006.04.005.  Google Scholar

[9]

H. Nie and J. H. Wu, Positive solutions of a competition model for two resources in the unstirred chemostat,, J. Math. Anal. Appl., 355 (2009), 231.  doi: 10.1016/j.jmaa.2009.01.045.  Google Scholar

[10]

H. Nie and J. H. Wu, Uniqueness and stability for coexistence solutions of the unstirred chemostat model,, Appl. Anal., 89 (2010), 1141.  doi: 10.1080/00036811003717954.  Google Scholar

[11]

H. Nie and J. H. Wu, The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, Discrete Contin. Dyn. Syst., 32 (2012), 303.  doi: 10.3934/dcds.2012.32.303.  Google Scholar

[12]

H. Nie and J. H. Wu, Multiple coexistence solutions to the unstirred chemostat model with plasmid and toxin,, European J. Appl. Math., 25 (2014), 481.  doi: 10.1017/S0956792514000096.  Google Scholar

[13]

H. Nie, W. Xie and J. H. Wu, Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor,, Comm. Pure Appl. Anal., 12 (2013), 1279.  doi: 10.3934/cpaa.2013.12.1279.  Google Scholar

[14]

T. Kato, Perturbation Theory of Linear Operators,, Springer, (1966).   Google Scholar

[15]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs 41, (1995).   Google Scholar

[16]

H. L. Smith and P. Waltman, The Theory of the Chemostat,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[17]

J. W. H. So and P. Waltman, A nonlinear boundary value problem arising from competition in the chemostat,, Appl. Math. Comput., 32 (1989), 169.  doi: 10.1016/0096-3003(89)90092-1.  Google Scholar

[18]

H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755.  doi: 10.1007/BF00173267.  Google Scholar

[19]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, Nonlinear Anal., 39 (2000), 817.  doi: 10.1016/S0362-546X(98)00250-8.  Google Scholar

[20]

J. H. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, SIAM J. Math. Anal., 38 (2007), 1860.  doi: 10.1137/050627514.  Google Scholar

[21]

J. H. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat,, J. Differential Equations, 172 (2001), 300.  doi: 10.1006/jdeq.2000.3870.  Google Scholar

[1]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[2]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[8]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[9]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[10]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[11]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]