March  2016, 21(2): 641-654. doi: 10.3934/dcdsb.2016.21.641

Destabilization threshold curves for diffusion systems with equal diffusivity under non-diagonal flux boundary conditions

1. 

Graduate School of Science, Department of Mathematical and Life Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan

Received  December 2014 Revised  September 2015 Published  November 2015

This article deals with destabilizations of Turing type for diffusive systems with equal diffusivity under non-diagonal flux boundary conditions. Stability-instability threshold curves in the complex plane are described as the graph of a piecewise analytic function for simple $m$-dimensional domains $(m\geq 1)$. Also analyzed are effects caused by imposing homogeneous boundary conditions of Dirichlet or Neumann type on appropriate portions of the domain boundary.
Citation: Kunimochi Sakamoto. Destabilization threshold curves for diffusion systems with equal diffusivity under non-diagonal flux boundary conditions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 641-654. doi: 10.3934/dcdsb.2016.21.641
References:
[1]

H. Amann, Parabolic evolution equations and nonlinear boundary conditions,, J. Differential Equations, 72 (1988), 201.  doi: 10.1016/0022-0396(88)90156-8.  Google Scholar

[2]

A. Anma and K. Sakamoto, Turing type mechanisms for linear diffusion systems under non-diagonal Robin boundary conditions,, SIAM Journal on Mathematical Analysis, 45 (2013), 3611.  doi: 10.1137/130908270.  Google Scholar

[3]

J. M. Arrieta, A. N. Carvalho and A. Rodríguez-Bernal, Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions,, J. Differential Equations, 168 (2000), 33.  doi: 10.1006/jdeq.2000.3876.  Google Scholar

[4]

G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems,, Numerical Func. Anal. Opt., 25 (2004), 321.  doi: 10.1081/NFA-120039655.  Google Scholar

[5]

H. Levine and W.-J. Rappel, Membrane-bound Turing patterns,, Physical Review E, 72 (2005).  doi: 10.1103/PhysRevE.72.061912.  Google Scholar

[6]

J. D. Murray, Mathematical Biology,, Biomathematics Texts, (1989).  doi: 10.1007/978-3-662-08539-4.  Google Scholar

[7]

Alan M. Turing, The chemical basis for morphogenesis,, Phil. Trans. R. Soc. London, B 273 (1952), 37.   Google Scholar

[8]

G. N. Watson, A Treatise on the Theory of Bessel Functions,, Cambridge Mathematical Library. Cambridge University Press, (1995).   Google Scholar

show all references

References:
[1]

H. Amann, Parabolic evolution equations and nonlinear boundary conditions,, J. Differential Equations, 72 (1988), 201.  doi: 10.1016/0022-0396(88)90156-8.  Google Scholar

[2]

A. Anma and K. Sakamoto, Turing type mechanisms for linear diffusion systems under non-diagonal Robin boundary conditions,, SIAM Journal on Mathematical Analysis, 45 (2013), 3611.  doi: 10.1137/130908270.  Google Scholar

[3]

J. M. Arrieta, A. N. Carvalho and A. Rodríguez-Bernal, Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions,, J. Differential Equations, 168 (2000), 33.  doi: 10.1006/jdeq.2000.3876.  Google Scholar

[4]

G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems,, Numerical Func. Anal. Opt., 25 (2004), 321.  doi: 10.1081/NFA-120039655.  Google Scholar

[5]

H. Levine and W.-J. Rappel, Membrane-bound Turing patterns,, Physical Review E, 72 (2005).  doi: 10.1103/PhysRevE.72.061912.  Google Scholar

[6]

J. D. Murray, Mathematical Biology,, Biomathematics Texts, (1989).  doi: 10.1007/978-3-662-08539-4.  Google Scholar

[7]

Alan M. Turing, The chemical basis for morphogenesis,, Phil. Trans. R. Soc. London, B 273 (1952), 37.   Google Scholar

[8]

G. N. Watson, A Treatise on the Theory of Bessel Functions,, Cambridge Mathematical Library. Cambridge University Press, (1995).   Google Scholar

[1]

Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279

[2]

Jihoon Lee, Vu Manh Toi. Attractors for a class of delayed reaction-diffusion equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020054

[3]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[4]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[5]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[6]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[7]

Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63

[8]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[9]

Cyrill B. Muratov, Xing Zhong. Threshold phenomena for symmetric-decreasing radial solutions of reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 915-944. doi: 10.3934/dcds.2017038

[10]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[11]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001

[12]

Liang Zhang, Zhi-Cheng Wang. Threshold dynamics of a reaction-diffusion epidemic model with stage structure. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3797-3820. doi: 10.3934/dcdsb.2017191

[13]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[14]

Alessio Fiscella, Enzo Vitillaro. Local Hadamard well--posedness and blow--up for reaction--diffusion equations with non--linear dynamical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5015-5047. doi: 10.3934/dcds.2013.33.5015

[15]

Gaocheng Yue. Attractors for non-autonomous reaction-diffusion equations with fractional diffusion in locally uniform spaces. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1645-1671. doi: 10.3934/dcdsb.2017079

[16]

Antonio Carlos Fernandes, Marcela Carvalho Gonçcalves, Jacson Simsen. Non-autonomous reaction-diffusion equations with variable exponents and large diffusion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1485-1510. doi: 10.3934/dcdsb.2018217

[17]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[18]

Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic & Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048

[19]

Wei-Jie Sheng, Wan-Tong Li. Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2681-2704. doi: 10.3934/dcds.2017115

[20]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]