-
Previous Article
Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity
- DCDS-B Home
- This Issue
-
Next Article
Stochastic PDE model for spatial population growth in random environments
Quasi-effective stability for nearly integrable Hamiltonian systems
1. | Fundamental Department, Aviation University of Air Force, Changchun 130022, China |
2. | State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190 |
3. | School of Mathematics, Jilin University, Changchun, 130012 |
References:
[1] |
Russ. Math. Surv., 18 (1963), 13-40. |
[2] |
Math. Z., 275 (2014), 1135-1167.
doi: 10.1007/s00209-013-1174-5. |
[3] |
Regular and Chaotic Dynamics, 19 (2014), 251-265.
doi: 10.1134/S1560354714020087. |
[4] |
J. Differential Equations, 128 (1996), 415-490.
doi: 10.1006/jdeq.1996.0102. |
[5] |
Regular and Chaotic Dynamics, 19 (2014), 363-373.
doi: 10.1134/S1560354714030071. |
[6] |
Rend. Lincel. Mat. Appl., 25 (2014), 293-299.
doi: 10.4171/RLM/679. |
[7] |
Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527-530. |
[8] |
J. Math. Anal. Appl., 419 (2014), 1351-1386.
doi: 10.1016/j.jmaa.2014.05.035. |
[9] |
Chaos, 2 (1992), 495-499.
doi: 10.1063/1.165891. |
[10] |
Celest. Mech., 55 (1993), 131-159.
doi: 10.1007/BF00692425. |
[11] |
J. Statist. Phys., 78 (1995), 1607-1617.
doi: 10.1007/BF02180145. |
[12] |
Phys. D, 86 (1995), 514-516.
doi: 10.1016/0167-2789(95)00199-E. |
[13] |
Nachr. Akad. Wiss. Gött. Math. Phys. Kl., 2 (1962), 1-20. |
[14] |
Russ. Math. Surveys, 32 (1977), 5-66. |
[15] |
Phys. D, 71 (1994), 102-121.
doi: 10.1016/0167-2789(94)90184-8. |
[16] |
Bonn. Math. Schr., 120 (1982), 1-103. |
[17] |
Math. Z., 213 (1993), 187-216.
doi: 10.1007/BF03025718. |
[18] |
Dynamical Systems, Theory and Applications, J. Moser (ed.), Lecture Notes in Physics, 38, Springer, 1975, 598-624. |
[19] |
J. Math. Phys., 54 (2013), 072702, 22pp.
doi: 10.1063/1.4813059. |
[20] |
Math. Z., 226 (1997), 375-387.
doi: 10.1007/PL00004344. |
show all references
References:
[1] |
Russ. Math. Surv., 18 (1963), 13-40. |
[2] |
Math. Z., 275 (2014), 1135-1167.
doi: 10.1007/s00209-013-1174-5. |
[3] |
Regular and Chaotic Dynamics, 19 (2014), 251-265.
doi: 10.1134/S1560354714020087. |
[4] |
J. Differential Equations, 128 (1996), 415-490.
doi: 10.1006/jdeq.1996.0102. |
[5] |
Regular and Chaotic Dynamics, 19 (2014), 363-373.
doi: 10.1134/S1560354714030071. |
[6] |
Rend. Lincel. Mat. Appl., 25 (2014), 293-299.
doi: 10.4171/RLM/679. |
[7] |
Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527-530. |
[8] |
J. Math. Anal. Appl., 419 (2014), 1351-1386.
doi: 10.1016/j.jmaa.2014.05.035. |
[9] |
Chaos, 2 (1992), 495-499.
doi: 10.1063/1.165891. |
[10] |
Celest. Mech., 55 (1993), 131-159.
doi: 10.1007/BF00692425. |
[11] |
J. Statist. Phys., 78 (1995), 1607-1617.
doi: 10.1007/BF02180145. |
[12] |
Phys. D, 86 (1995), 514-516.
doi: 10.1016/0167-2789(95)00199-E. |
[13] |
Nachr. Akad. Wiss. Gött. Math. Phys. Kl., 2 (1962), 1-20. |
[14] |
Russ. Math. Surveys, 32 (1977), 5-66. |
[15] |
Phys. D, 71 (1994), 102-121.
doi: 10.1016/0167-2789(94)90184-8. |
[16] |
Bonn. Math. Schr., 120 (1982), 1-103. |
[17] |
Math. Z., 213 (1993), 187-216.
doi: 10.1007/BF03025718. |
[18] |
Dynamical Systems, Theory and Applications, J. Moser (ed.), Lecture Notes in Physics, 38, Springer, 1975, 598-624. |
[19] |
J. Math. Phys., 54 (2013), 072702, 22pp.
doi: 10.1063/1.4813059. |
[20] |
Math. Z., 226 (1997), 375-387.
doi: 10.1007/PL00004344. |
[1] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[2] |
Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235 |
[3] |
Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049 |
[4] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[5] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400 |
[6] |
Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064 |
[7] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015 |
[8] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[9] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[10] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[11] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[12] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[13] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[14] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[15] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[16] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[17] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[18] |
Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021069 |
[19] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[20] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]