March  2016, 21(2): 677-697. doi: 10.3934/dcdsb.2016.21.677

On a two-patch predator-prey model with adaptive habitancy of predators

1. 

Department of Applied Mathematics, University of Western Ontario, London, ON N6A 5B7, Canada

2. 

Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7

Received  July 2014 Revised  January 2015 Published  November 2015

A two-patch predator-prey model with the Holling type II functional response is studied, in which predators are assumed to adopt adaptive dispersal to inhabit the better patch in order to gain more fitness. Analytical conditions for the persistence and extinction of predators are obtained under different scenarios of the model. Numerical simulations are conducted which show that adaptive dispersal can stabilize the system with either weak or strong adaptation, when prey and predators tend to a globally stable equilibrium in one isolated patch and tend to limit cycles in the other. Furthermore, it is observed that the adaptive dispersal may cause torus bifurcation for the model when the prey and predators population tend to limit cycles in each isolated patch.
Citation: Xiaoying Wang, Xingfu Zou. On a two-patch predator-prey model with adaptive habitancy of predators. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 677-697. doi: 10.3934/dcdsb.2016.21.677
References:
[1]

P. A. Abrams, R. Cressman and V. Křivan, The role of behavioral dynamics in determining the patch distributions of interacting species, The American Naturalist, 169 (2007), 505-518. doi: 10.1086/511963.

[2]

D. M. Buss and H. Greiling, Adaptive individual differences, Journal of Personality, 67 (1999), 209-243. doi: 10.1111/1467-6494.00053.

[3]

R. S. Cantrell, C. Cosner, D. L. Deangelis and V. Padron, The ideal free distribution as an evolutionarily stable strategy, Journal of Biological Dynamics, 1 (2007), 249-271. doi: 10.1080/17513750701450227.

[4]

R. S. Cantrell, C. Cosner and Y. Lou, Evolutionary stability of ideal free dispersal strategies in patchy environments, Journaal of Mathematical Biology, 65 (2012), 943-965. doi: 10.1007/s00285-011-0486-5.

[5]

M. E. Clark, T. G. Wolcott, D. L. Wolcott and A. H. Hines, Foraging behavior of an estuarine predator, the blue crab Callinectes sapidus in a patchy environment, Ecography, 23 (2000), 21-31.

[6]

S. Creel and N. M. Dreel, The African Wild Dog: Behavior, Ecology, and Conservation, Princeton University Press, 2002.

[7]

R. Cressman and V. Křivan, Migration dynamics for the ideal free distribution, The American Naturalist, 168 (2006), 384-397. doi: 10.1086/506970.

[8]

R. Cressman and V. Křivan, Two-patch population models with adaptive dispersal: The effects of varying dispersal speeds, Journal of Mathematical Biology, 67 (2013), 329-358. doi: 10.1007/s00285-012-0548-3.

[9]

R. Cressman, V. Křivan and J. Garay, Ideal free distributions, evolutionary games, and population dynamics in multiple-species environments, The American Naturalist, 164 (2004), 473-489. doi: 10.1086/423827.

[10]

S. D. Fretwell and J. S. Calver, On territorial behavior and other factors influencing habitat distribution in birds, Acta Biotheoretica, 19 (1969), 37-44.

[11]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM Journal on Mathematical Analysis, 20 (1989), 388-395. doi: 10.1137/0520025.

[12]

J. Hofbauer and K. Sigmund, Evolutionray Games and Population Dynamics, Cambridge University Press, 1998. doi: 10.1017/CBO9781139173179.

[13]

C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society of Canada, 97 (1965), 5-60. doi: 10.4039/entm9745fv.

[14]

V. Křivan, The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs, The American Naturalist, 170 (2007), 771-782.

[15]

V. Křivan and R. Cressman, On evolutionary stability in predator-prey models with fast behavioral dynamics, Evolutionary Ecology Research, 11 (2009), 227-251.

[16]

Y. Kuang and Y. Takeuchi, Predator-prey dynamics in models of prey dispersal in two-patch environments, Mathematical Biosciences, 120 (1994), 77-98. doi: 10.1016/0025-5564(94)90038-8.

[17]

S. A. Levin, Dispersion and population interactions, The American Naturalist, 108 (1974), 207-228. doi: 10.1086/282900.

[18]

J. D. Murray, Mathematical Biology, I, An Introduction, Springer, 2002.

[19]

I. Scharf, E. Nulman, O. Ovadia and A. Bouskila, Efficiency evaluation of two competing foraging modes under different conditions, The American Naturalist, 168 (2006), 350-357. doi: 10.1086/506921.

[20]

R. D. Seitz, R. N. Lipcius, A. H. Hines and D. B. Eggleston, Density-dependent predation, habitat variation, and the persistence of marine bivalve prey, Ecology, 82 (2001), 2435-2451.

[21]

J. E. Staddon, Adaptive Behaviour and Learning, CUP Archive, 1983.

[22]

C. Starr, R. Taggart, C. Evers and L. Starr, Biology: The Unity And Diversity of Life, Yolanda Cossio, 2009.

[23]

H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM Journal on Mathematical Analysis, 24 (1993), 407-435. doi: 10.1137/0524026.

[24]

W. Wang and Y. Takeuchi, Adaptation of prey and predators between patches, Journal of Theoretical Biology, 258 (2009), 603-613. doi: 10.1016/j.jtbi.2009.02.014.

[25]

D. K. Wasko and M. Sasa, Food resources influence spatial ecology, habitat selection, and foraging behavior in an ambush-hunting snake (Viperidae: Bothrops asper): an experimental study, Zoology, 115 (2012), 179-187. doi: 10.1016/j.zool.2011.10.001.

show all references

References:
[1]

P. A. Abrams, R. Cressman and V. Křivan, The role of behavioral dynamics in determining the patch distributions of interacting species, The American Naturalist, 169 (2007), 505-518. doi: 10.1086/511963.

[2]

D. M. Buss and H. Greiling, Adaptive individual differences, Journal of Personality, 67 (1999), 209-243. doi: 10.1111/1467-6494.00053.

[3]

R. S. Cantrell, C. Cosner, D. L. Deangelis and V. Padron, The ideal free distribution as an evolutionarily stable strategy, Journal of Biological Dynamics, 1 (2007), 249-271. doi: 10.1080/17513750701450227.

[4]

R. S. Cantrell, C. Cosner and Y. Lou, Evolutionary stability of ideal free dispersal strategies in patchy environments, Journaal of Mathematical Biology, 65 (2012), 943-965. doi: 10.1007/s00285-011-0486-5.

[5]

M. E. Clark, T. G. Wolcott, D. L. Wolcott and A. H. Hines, Foraging behavior of an estuarine predator, the blue crab Callinectes sapidus in a patchy environment, Ecography, 23 (2000), 21-31.

[6]

S. Creel and N. M. Dreel, The African Wild Dog: Behavior, Ecology, and Conservation, Princeton University Press, 2002.

[7]

R. Cressman and V. Křivan, Migration dynamics for the ideal free distribution, The American Naturalist, 168 (2006), 384-397. doi: 10.1086/506970.

[8]

R. Cressman and V. Křivan, Two-patch population models with adaptive dispersal: The effects of varying dispersal speeds, Journal of Mathematical Biology, 67 (2013), 329-358. doi: 10.1007/s00285-012-0548-3.

[9]

R. Cressman, V. Křivan and J. Garay, Ideal free distributions, evolutionary games, and population dynamics in multiple-species environments, The American Naturalist, 164 (2004), 473-489. doi: 10.1086/423827.

[10]

S. D. Fretwell and J. S. Calver, On territorial behavior and other factors influencing habitat distribution in birds, Acta Biotheoretica, 19 (1969), 37-44.

[11]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM Journal on Mathematical Analysis, 20 (1989), 388-395. doi: 10.1137/0520025.

[12]

J. Hofbauer and K. Sigmund, Evolutionray Games and Population Dynamics, Cambridge University Press, 1998. doi: 10.1017/CBO9781139173179.

[13]

C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society of Canada, 97 (1965), 5-60. doi: 10.4039/entm9745fv.

[14]

V. Křivan, The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs, The American Naturalist, 170 (2007), 771-782.

[15]

V. Křivan and R. Cressman, On evolutionary stability in predator-prey models with fast behavioral dynamics, Evolutionary Ecology Research, 11 (2009), 227-251.

[16]

Y. Kuang and Y. Takeuchi, Predator-prey dynamics in models of prey dispersal in two-patch environments, Mathematical Biosciences, 120 (1994), 77-98. doi: 10.1016/0025-5564(94)90038-8.

[17]

S. A. Levin, Dispersion and population interactions, The American Naturalist, 108 (1974), 207-228. doi: 10.1086/282900.

[18]

J. D. Murray, Mathematical Biology, I, An Introduction, Springer, 2002.

[19]

I. Scharf, E. Nulman, O. Ovadia and A. Bouskila, Efficiency evaluation of two competing foraging modes under different conditions, The American Naturalist, 168 (2006), 350-357. doi: 10.1086/506921.

[20]

R. D. Seitz, R. N. Lipcius, A. H. Hines and D. B. Eggleston, Density-dependent predation, habitat variation, and the persistence of marine bivalve prey, Ecology, 82 (2001), 2435-2451.

[21]

J. E. Staddon, Adaptive Behaviour and Learning, CUP Archive, 1983.

[22]

C. Starr, R. Taggart, C. Evers and L. Starr, Biology: The Unity And Diversity of Life, Yolanda Cossio, 2009.

[23]

H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM Journal on Mathematical Analysis, 24 (1993), 407-435. doi: 10.1137/0524026.

[24]

W. Wang and Y. Takeuchi, Adaptation of prey and predators between patches, Journal of Theoretical Biology, 258 (2009), 603-613. doi: 10.1016/j.jtbi.2009.02.014.

[25]

D. K. Wasko and M. Sasa, Food resources influence spatial ecology, habitat selection, and foraging behavior in an ambush-hunting snake (Viperidae: Bothrops asper): an experimental study, Zoology, 115 (2012), 179-187. doi: 10.1016/j.zool.2011.10.001.

[1]

Wei Feng, Jody Hinson. Stability and pattern in two-patch predator-prey population dynamics. Conference Publications, 2005, 2005 (Special) : 268-279. doi: 10.3934/proc.2005.2005.268

[2]

Peter A. Braza. Predator-Prey Dynamics with Disease in the Prey. Mathematical Biosciences & Engineering, 2005, 2 (4) : 703-717. doi: 10.3934/mbe.2005.2.703

[3]

Yaying Dong, Shanbing Li, Yanling Li. Effects of dispersal for a predator-prey model in a heterogeneous environment. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2511-2528. doi: 10.3934/cpaa.2019114

[4]

Yu-Xia Hao, Wan-Tong Li, Fei-Ying Yang. Traveling waves in a nonlocal dispersal predator-prey model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3113-3139. doi: 10.3934/dcdss.2020340

[5]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[6]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[7]

Yun Kang, Sourav Kumar Sasmal, Komi Messan. A two-patch prey-predator model with predator dispersal driven by the predation strength. Mathematical Biosciences & Engineering, 2017, 14 (4) : 843-880. doi: 10.3934/mbe.2017046

[8]

Feiying Yang, Wantong Li, Renhu Wang. Invasion waves for a nonlocal dispersal predator-prey model with two predators and one prey. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4083-4105. doi: 10.3934/cpaa.2021146

[9]

Fasma Diele, Carmela Marangi. Positive symplectic integrators for predator-prey dynamics. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2661-2678. doi: 10.3934/dcdsb.2017185

[10]

Dingyong Bai, Jianshe Yu, Yun Kang. Spatiotemporal dynamics of a diffusive predator-prey model with generalist predator. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 2949-2973. doi: 10.3934/dcdss.2020132

[11]

Malay Banerjee, Nayana Mukherjee, Vitaly Volpert. Prey-predator model with nonlocal and global consumption in the prey dynamics. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2109-2120. doi: 10.3934/dcdss.2020180

[12]

Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay. Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences & Engineering, 2014, 11 (4) : 877-918. doi: 10.3934/mbe.2014.11.877

[13]

Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3253-3269. doi: 10.3934/dcdss.2020130

[14]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[15]

Yiwen Tao, Jingli Ren. The stability and bifurcation of homogeneous diffusive predator–prey systems with spatio–temporal delays. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 229-243. doi: 10.3934/dcdsb.2021038

[16]

Lizhi Fei, Xingwu Chen. Bifurcation and control of a predator-prey system with unfixed functional responses. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021292

[17]

Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124

[18]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[19]

Shuxia Pan. Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle. Electronic Research Archive, 2019, 27: 89-99. doi: 10.3934/era.2019011

[20]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (169)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]