-
Previous Article
Stochastic epidemic models driven by stochastic algorithms with constant step
- DCDS-B Home
- This Issue
-
Next Article
On a two-patch predator-prey model with adaptive habitancy of predators
Dynamics and bifurcations on a class of population model with seasonal constant-yield harvesting
1. | Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China |
References:
[1] |
F. Brauer and A. C. Soudack, Stability regions and transition phenomena for harvested predator-prey systems,, J.Math.Biol., 7 (1979), 319.
doi: 10.1007/BF00275152. |
[2] |
F. Brauer and A. C. Soudack, Stability regions in predator-prey systems with constant rate prey harvesting,, J. Math. Biol., 8 (1979), 55.
doi: 10.1007/BF00280586. |
[3] |
F. Brauer and A. C. Soudack, Coexistence properties of some predator-prey systems under constant rate harvesting and stocking,, J. Math. Biol., 12 (1982), 101.
doi: 10.1007/BF00275206. |
[4] |
F. Brauer and D. A. Sánchez, Periodic environments and periodic harvesting,, Natural Resource Modeling, 16 (2003), 233.
doi: 10.1111/j.1939-7445.2003.tb00113.x. |
[5] |
J. Chen, J. Huang, S. Ruan and J. Wang, Bifurcations of invariant tori in predator-prey models with seasonal prey harvesting,, SIAM J. Appl. Math., 73 (2013), 1876.
doi: 10.1137/120895858. |
[6] |
J. P. Cohen and J. S. Foale, Sustaining small-scale fisheries with periodically harvested marine reserves,, Marine Policy, 37 (2013), 278.
doi: 10.1016/j.marpol.2012.05.010. |
[7] |
C. W. Clark, Mathematical Bioeconomics, The Optimal Management of Renewable Resources,, $2^{nd}$ edition, (1990).
|
[8] |
G. Dai and M. Tang, Coexistence region and global dynamics of a harvested predator-prey system,, SIAM J. Appl. Math., 58 (1998), 193.
doi: 10.1137/S0036139994275799. |
[9] |
R. M. Etoua and C. Rousseau, Bifurcation analysis of a generalissed Gause model with prey harvesting and a generalized Holling response function of type III,, J. Differential Equations, 249 (2010), 2316.
doi: 10.1016/j.jde.2010.06.021. |
[10] |
M. Fan and K. Wang, Optimal harvesting policy for single population with periodic coefficients,, Mathematical Biosciences, 152 (1998), 165.
doi: 10.1016/S0025-5564(98)10024-X. |
[11] |
M. Hasanbulli , P. S. Rogovchenko and Y. V. Rogovchenko, Dynamics of a single species in a fluctuating environment under periodic yield harvesting,, Journal of Applied Mathematics, (2013).
|
[12] |
L. S. Hill, J. E. Murphy, K. Reid, P. N. Trathan and J. A. Constable, Modelling Southern Ocean ecosystems: Krill, the food-web, and the impacts of harvesting,, Biol. Rev., 81 (2006), 581. Google Scholar |
[13] |
M. Hirsch, S. Smale and R. Devaney, Differential Equations, Dynamical Systems and An Introduction to Chaos,, Elsevier, (2004).
doi: 10.1007/978-1-4612-0873-0. |
[14] |
S.-B. Hsu and X.-Q. Zhao, A Lotka-Volterra competition model with seasonal succession,, J. Math. Biol., 64 (2012), 109.
doi: 10.1007/s00285-011-0408-6. |
[15] |
S. S. Hu and A. J. Tessier, Seasonal succession and the strength of intra- and interspecific competition in a Daphnia assemblage,, Ecology, 76 (1995), 2278.
doi: 10.2307/1941702. |
[16] |
B. Leard, C. Lewis and J. Rebaza, Dynamics of ratio-depedent predator-prey models with nonconstant harvesting,, Discrete Contin. Dynam. Syst. Ser. S 1 (2008), 1 (2008), 303.
doi: 10.3934/dcdss.2008.1.303. |
[17] |
R. May, J. R. Beddington, C. W. Clark, S. J. Holt and R. M. Laws, Management of multispecies fisheries,, Science, 205 (1979), 267.
doi: 10.1126/science.205.4403.267. |
[18] |
M. B. Schaefer, Some aspects of the dynamics of populations important to the management of commercial marine fisheries,, Bull. Inter-Am. Trop. Tuna Comm., 1 (1954), 25. Google Scholar |
[19] |
R. J. Schmitt and S. J. Holbrook, Seasonally fluctuating resources and temporal variability of interspecific competition,, Oecologia, 69 (1986), 1.
doi: 10.1007/BF00399030. |
[20] |
Y. L. Tang and D. Xiao, Periodic solutions for a predator-prey model with periodic harvesting rate,, International Journal of Bifurcation and Chaos, 24 (2014).
doi: 10.1142/S0218127414500965. |
[21] |
C. J. Waiters and P. J. Bandy, Periodic harvest as a method of increasing big game yields,, J. Wildl. Manage., 36 (1972), 128. Google Scholar |
[22] |
D. Xiao and L. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting,, SIAM J. Appl. Math., 65 (2005), 737.
doi: 10.1137/S0036139903428719. |
[23] |
D. Xiao, W. Li and M. Han, Dynamics in a ratio-dependent predator-prey model with predator harvesting,, J. Math. Anal. Appl., 324 (2006), 14.
doi: 10.1016/j.jmaa.2005.11.048. |
[24] |
C. Xu, M. S. Boyce and D. J. Daley, Harvesting in seasonal environments,, Journal of Mathematical Biology, 50 (2005), 663.
doi: 10.1007/s00285-004-0303-5. |
show all references
References:
[1] |
F. Brauer and A. C. Soudack, Stability regions and transition phenomena for harvested predator-prey systems,, J.Math.Biol., 7 (1979), 319.
doi: 10.1007/BF00275152. |
[2] |
F. Brauer and A. C. Soudack, Stability regions in predator-prey systems with constant rate prey harvesting,, J. Math. Biol., 8 (1979), 55.
doi: 10.1007/BF00280586. |
[3] |
F. Brauer and A. C. Soudack, Coexistence properties of some predator-prey systems under constant rate harvesting and stocking,, J. Math. Biol., 12 (1982), 101.
doi: 10.1007/BF00275206. |
[4] |
F. Brauer and D. A. Sánchez, Periodic environments and periodic harvesting,, Natural Resource Modeling, 16 (2003), 233.
doi: 10.1111/j.1939-7445.2003.tb00113.x. |
[5] |
J. Chen, J. Huang, S. Ruan and J. Wang, Bifurcations of invariant tori in predator-prey models with seasonal prey harvesting,, SIAM J. Appl. Math., 73 (2013), 1876.
doi: 10.1137/120895858. |
[6] |
J. P. Cohen and J. S. Foale, Sustaining small-scale fisheries with periodically harvested marine reserves,, Marine Policy, 37 (2013), 278.
doi: 10.1016/j.marpol.2012.05.010. |
[7] |
C. W. Clark, Mathematical Bioeconomics, The Optimal Management of Renewable Resources,, $2^{nd}$ edition, (1990).
|
[8] |
G. Dai and M. Tang, Coexistence region and global dynamics of a harvested predator-prey system,, SIAM J. Appl. Math., 58 (1998), 193.
doi: 10.1137/S0036139994275799. |
[9] |
R. M. Etoua and C. Rousseau, Bifurcation analysis of a generalissed Gause model with prey harvesting and a generalized Holling response function of type III,, J. Differential Equations, 249 (2010), 2316.
doi: 10.1016/j.jde.2010.06.021. |
[10] |
M. Fan and K. Wang, Optimal harvesting policy for single population with periodic coefficients,, Mathematical Biosciences, 152 (1998), 165.
doi: 10.1016/S0025-5564(98)10024-X. |
[11] |
M. Hasanbulli , P. S. Rogovchenko and Y. V. Rogovchenko, Dynamics of a single species in a fluctuating environment under periodic yield harvesting,, Journal of Applied Mathematics, (2013).
|
[12] |
L. S. Hill, J. E. Murphy, K. Reid, P. N. Trathan and J. A. Constable, Modelling Southern Ocean ecosystems: Krill, the food-web, and the impacts of harvesting,, Biol. Rev., 81 (2006), 581. Google Scholar |
[13] |
M. Hirsch, S. Smale and R. Devaney, Differential Equations, Dynamical Systems and An Introduction to Chaos,, Elsevier, (2004).
doi: 10.1007/978-1-4612-0873-0. |
[14] |
S.-B. Hsu and X.-Q. Zhao, A Lotka-Volterra competition model with seasonal succession,, J. Math. Biol., 64 (2012), 109.
doi: 10.1007/s00285-011-0408-6. |
[15] |
S. S. Hu and A. J. Tessier, Seasonal succession and the strength of intra- and interspecific competition in a Daphnia assemblage,, Ecology, 76 (1995), 2278.
doi: 10.2307/1941702. |
[16] |
B. Leard, C. Lewis and J. Rebaza, Dynamics of ratio-depedent predator-prey models with nonconstant harvesting,, Discrete Contin. Dynam. Syst. Ser. S 1 (2008), 1 (2008), 303.
doi: 10.3934/dcdss.2008.1.303. |
[17] |
R. May, J. R. Beddington, C. W. Clark, S. J. Holt and R. M. Laws, Management of multispecies fisheries,, Science, 205 (1979), 267.
doi: 10.1126/science.205.4403.267. |
[18] |
M. B. Schaefer, Some aspects of the dynamics of populations important to the management of commercial marine fisheries,, Bull. Inter-Am. Trop. Tuna Comm., 1 (1954), 25. Google Scholar |
[19] |
R. J. Schmitt and S. J. Holbrook, Seasonally fluctuating resources and temporal variability of interspecific competition,, Oecologia, 69 (1986), 1.
doi: 10.1007/BF00399030. |
[20] |
Y. L. Tang and D. Xiao, Periodic solutions for a predator-prey model with periodic harvesting rate,, International Journal of Bifurcation and Chaos, 24 (2014).
doi: 10.1142/S0218127414500965. |
[21] |
C. J. Waiters and P. J. Bandy, Periodic harvest as a method of increasing big game yields,, J. Wildl. Manage., 36 (1972), 128. Google Scholar |
[22] |
D. Xiao and L. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting,, SIAM J. Appl. Math., 65 (2005), 737.
doi: 10.1137/S0036139903428719. |
[23] |
D. Xiao, W. Li and M. Han, Dynamics in a ratio-dependent predator-prey model with predator harvesting,, J. Math. Anal. Appl., 324 (2006), 14.
doi: 10.1016/j.jmaa.2005.11.048. |
[24] |
C. Xu, M. S. Boyce and D. J. Daley, Harvesting in seasonal environments,, Journal of Mathematical Biology, 50 (2005), 663.
doi: 10.1007/s00285-004-0303-5. |
[1] |
Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020288 |
[2] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
[3] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[4] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[5] |
Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020426 |
[6] |
Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085 |
[7] |
Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282 |
[8] |
Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153 |
[9] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[10] |
Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157 |
[11] |
Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021005 |
[12] |
Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040 |
[13] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[14] |
Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021014 |
[15] |
Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020464 |
[16] |
Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169 |
[17] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[18] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[19] |
Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031 |
[20] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]