May  2016, 21(3): 737-761. doi: 10.3934/dcdsb.2016.21.737

A prey-predator model with migrations and delays

1. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's NL, A1C 5S7, Canada

2. 

School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China

3. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's NL, Canada A1C 5S7

Received  January 2015 Revised  September 2015 Published  January 2016

In this paper we propose a prey-predator model in multiple patches through the stage structured maturation time delay with migrations among patches. Focus on the case with two patches, we discuss the existence of equilibrium points and the uniform persistence. In particular, when the maturation times are the same in the patches, we study the local and global attractivity of boundary equilibrium point with general migration function and the local stability of the positive equilibrium with constant migration rate. Numerical simulations are provided to demonstrate the theoretical results, to illustrate the effect of the maturation time, the migration rate on the dynamical behavior of the system.
Citation: Isam Al-Darabsah, Xianhua Tang, Yuan Yuan. A prey-predator model with migrations and delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 737-761. doi: 10.3934/dcdsb.2016.21.737
References:
[1]

K. M. Abadir and J. R. Magnus, Matrix Algebra,, Cambridge University Press, (2005). doi: 10.1017/CBO9780511810800. Google Scholar

[2]

A. El Abdllaoui, P. Auger, B. W. Kooi, R. B. Parra and R. Mchich, Effects of density-dependent migrations on stability of a two-patch predator-prey model,, Mathematical Biosciences, 210 (2007), 335. doi: 10.1016/j.mbs.2007.03.002. Google Scholar

[3]

I. Al-Darabsah and Y. Yuan, Dynamics of a general stage structured n parallel food chains,, Proceedings of the International Symposium on Mathematical and Computational Biology, (2014), 63. Google Scholar

[4]

V. Andersen, A. Gubanova, P. Nival and T. Ruellet, Zooplankton community during the transition from spring bloom to oligotrophy in the open NW mediterranean and effects of wind events. 2. vertical distributions and migrations,, Journal of Plankton Research, 23 (2001), 243. doi: 10.1093/plankt/23.3.243. Google Scholar

[5]

R. A. Armstrong, Stable model structures for representing biogeochemical diversity and size spectra in plankton communities,, Journal of Plankton research, 21 (1999), 445. doi: 10.1093/plankt/21.3.445. Google Scholar

[6]

M. Bandyopadhyay and S. Banerjee, A stage-structured prey-predator model with discrete time delay,, Applied Mathematics and Computation, 182 (2006), 1385. doi: 10.1016/j.amc.2006.05.025. Google Scholar

[7]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters,, SIAM J Math Anal., 33 (2002), 1144. Google Scholar

[8]

Y. Cai, M. Banerjee, Y. Kang and W. Wang, Spatiotemporal complexity in a predator-prey model with weak Allee effects,, Mathematical Biosciences and Engineering, 11 (2014), 1247. Google Scholar

[9]

B. Daia, H. Su and D. Hu, Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse,, Nonlinear Analysis, 70 (2009), 126. doi: 10.1016/j.na.2007.11.036. Google Scholar

[10]

W. Feng, B. Rock and J. Hinson, On a new model of two-patch predator-prey system with migration of both Species,, J. Applied Analysis and Computation, 1 (2011), 193. Google Scholar

[11]

D. R. French and J. M. Travis, Density-dependent dispersal in host-parasitoid assemblages,, Oikos, 95 (2001), 125. doi: 10.1034/j.1600-0706.2001.950114.x. Google Scholar

[12]

S. A. Gourley and Y. Kuang, A stage structured predator-prey model and its dependence on maturation delay and death rate,, Journal of Mathematical Biology, 49 (2004), 188. doi: 10.1007/s00285-004-0278-2. Google Scholar

[13]

A. Hastings and L. Gross, editors, Encyclopedia of Theoretical Ecology,, University of California Press, (2012). Google Scholar

[14]

C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation,, Memoirs of the Entomological Society of Canada, 97 (1965), 5. Google Scholar

[15]

Y. Huang, F. Chen and L. Zhong, Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge,, Applied Mathematics and Computation, 182 (2006), 672. doi: 10.1016/j.amc.2006.04.030. Google Scholar

[16]

V. S. Ivlev, Experimental Ecology of the Feeding of Fishes,, Yale University Press, (1961). Google Scholar

[17]

V. Jansen, Theoretical Aspects of Metapopulation Dynamics,, Ph.D. thesis Leiden University The Netherlands, (1994). Google Scholar

[18]

Y. Kang, S. K. Sasmal, A. R. Bhowmick and J. Chattopadhyay, Dynamics of a predator-prey system with prey subject to Allee effects and disease,, Mathematical Biosciences and Engineering, 11 (2014), 877. doi: 10.3934/mbe.2014.11.877. Google Scholar

[19]

Y. Kuang, Delay Differential Equation with Application in Population Dynamics,, New York: Academic Press, (1993). Google Scholar

[20]

Y. Kuang and Y. Takeuchi, Predator-prey dynamics in models of prey dispersal in two-patch environments,, Mathematical Biosciences, 120 (1994), 77. doi: 10.1016/0025-5564(94)90038-8. Google Scholar

[21]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434. doi: 10.1137/090779322. Google Scholar

[22]

R. Mchich, P. Auger and J. C. Poggiale, Effect of predator density dependent dispersal of prey on stability of a predator-prey system,, Mathematical Biosciences, 206 (2007), 343. doi: 10.1016/j.mbs.2005.11.005. Google Scholar

[23]

J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications,, Third edition. Interdisciplinary Applied Mathematics, (2003). Google Scholar

[24]

K. Olli, Diel vertical migration of phytoplankton and heterotrophic flagellates in the Gulf of Riga,, Journal of Marine Systems, 23 (1999), 145. doi: 10.1016/S0924-7963(99)00055-X. Google Scholar

[25]

I. L. Pepper, C. P. Gerba and T. J. Gentry, editors, Environmental Microbiology,, Academic Press, (2014). Google Scholar

[26]

P. Pillai, A. Gonzalez and M. Loreau, Evolution of dispersal in a predator-prey metacommunity,, The American Naturalist, 179 (2012), 204. doi: 10.1086/663674. Google Scholar

[27]

T. S. Shores, Applied Linear Algebra and Matrix Analysis,, Springer, (2007). doi: 10.1007/978-0-387-48947-6. Google Scholar

[28]

J. R. Silvester, Determinants of block matrices,, Maths Gazette, 84 (2000), 460. doi: 10.2307/3620776. Google Scholar

[29]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, American Mathematical Society, (1995). Google Scholar

[30]

H. L. Smith and X. Q. Zhao, Robust persistence for semidynamical systems,, Nonlinear Analysis, 47 (2001), 6169. doi: 10.1016/S0362-546X(01)00678-2. Google Scholar

[31]

P. D. Srinivasu and I. L. Gayatri, Influence of prey reserve capacity on predator-prey dynamics,, Ecological Modelling, 181 (2005), 191. doi: 10.1016/j.ecolmodel.2004.06.031. Google Scholar

[32]

X. H. Tang and X. Zou, Global attractivity in a predator-prey system with pure delays,, Proceedings of the Edinburgh Mathematical Society, 51 (2008), 495. doi: 10.1017/S0013091506000988. Google Scholar

[33]

D. Tilman and P. Kareiva, Spatial Ecology,, Princenton University Press, (1997). Google Scholar

[34]

F. Wang, Y. Kuang, C. Ding and S. Zhang, Stability and bifurcation of a stage-structured predator-prey model with both discrete and distributed delays,, Chaos, 46 (2013), 19. doi: 10.1016/j.chaos.2012.10.003. Google Scholar

[35]

Z. Wang and X. Q. Zhao, Global dynamics of a time-delayed dengue transmission model,, Canadian Appl. Math. Quarterly, 20 (2012), 89. Google Scholar

[36]

R. Xu and L. Chen, Persistence and stability for a two-species ratio-dependent predator-prey system with time delay in a two-patch environment,, Computers & Mathematics with Applications, 40 (2000), 577. doi: 10.1016/S0898-1221(00)00181-4. Google Scholar

[37]

C. Xu, X. Tang, M. Liao and X. He, Bifurcation analysis in a delayed Lokta-Volterra predator-prey model with two delays,, Nonlinear Dynamics, 66 (2011), 169. doi: 10.1007/s11071-010-9919-8. Google Scholar

[38]

Y. Yuan and J. Bélair, Threshold dynamics in an SEIRS model with latency and temporary immunity,, Journal of Mathematical Biology, 69 (2014), 875. doi: 10.1007/s00285-013-0720-4. Google Scholar

show all references

References:
[1]

K. M. Abadir and J. R. Magnus, Matrix Algebra,, Cambridge University Press, (2005). doi: 10.1017/CBO9780511810800. Google Scholar

[2]

A. El Abdllaoui, P. Auger, B. W. Kooi, R. B. Parra and R. Mchich, Effects of density-dependent migrations on stability of a two-patch predator-prey model,, Mathematical Biosciences, 210 (2007), 335. doi: 10.1016/j.mbs.2007.03.002. Google Scholar

[3]

I. Al-Darabsah and Y. Yuan, Dynamics of a general stage structured n parallel food chains,, Proceedings of the International Symposium on Mathematical and Computational Biology, (2014), 63. Google Scholar

[4]

V. Andersen, A. Gubanova, P. Nival and T. Ruellet, Zooplankton community during the transition from spring bloom to oligotrophy in the open NW mediterranean and effects of wind events. 2. vertical distributions and migrations,, Journal of Plankton Research, 23 (2001), 243. doi: 10.1093/plankt/23.3.243. Google Scholar

[5]

R. A. Armstrong, Stable model structures for representing biogeochemical diversity and size spectra in plankton communities,, Journal of Plankton research, 21 (1999), 445. doi: 10.1093/plankt/21.3.445. Google Scholar

[6]

M. Bandyopadhyay and S. Banerjee, A stage-structured prey-predator model with discrete time delay,, Applied Mathematics and Computation, 182 (2006), 1385. doi: 10.1016/j.amc.2006.05.025. Google Scholar

[7]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters,, SIAM J Math Anal., 33 (2002), 1144. Google Scholar

[8]

Y. Cai, M. Banerjee, Y. Kang and W. Wang, Spatiotemporal complexity in a predator-prey model with weak Allee effects,, Mathematical Biosciences and Engineering, 11 (2014), 1247. Google Scholar

[9]

B. Daia, H. Su and D. Hu, Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse,, Nonlinear Analysis, 70 (2009), 126. doi: 10.1016/j.na.2007.11.036. Google Scholar

[10]

W. Feng, B. Rock and J. Hinson, On a new model of two-patch predator-prey system with migration of both Species,, J. Applied Analysis and Computation, 1 (2011), 193. Google Scholar

[11]

D. R. French and J. M. Travis, Density-dependent dispersal in host-parasitoid assemblages,, Oikos, 95 (2001), 125. doi: 10.1034/j.1600-0706.2001.950114.x. Google Scholar

[12]

S. A. Gourley and Y. Kuang, A stage structured predator-prey model and its dependence on maturation delay and death rate,, Journal of Mathematical Biology, 49 (2004), 188. doi: 10.1007/s00285-004-0278-2. Google Scholar

[13]

A. Hastings and L. Gross, editors, Encyclopedia of Theoretical Ecology,, University of California Press, (2012). Google Scholar

[14]

C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation,, Memoirs of the Entomological Society of Canada, 97 (1965), 5. Google Scholar

[15]

Y. Huang, F. Chen and L. Zhong, Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge,, Applied Mathematics and Computation, 182 (2006), 672. doi: 10.1016/j.amc.2006.04.030. Google Scholar

[16]

V. S. Ivlev, Experimental Ecology of the Feeding of Fishes,, Yale University Press, (1961). Google Scholar

[17]

V. Jansen, Theoretical Aspects of Metapopulation Dynamics,, Ph.D. thesis Leiden University The Netherlands, (1994). Google Scholar

[18]

Y. Kang, S. K. Sasmal, A. R. Bhowmick and J. Chattopadhyay, Dynamics of a predator-prey system with prey subject to Allee effects and disease,, Mathematical Biosciences and Engineering, 11 (2014), 877. doi: 10.3934/mbe.2014.11.877. Google Scholar

[19]

Y. Kuang, Delay Differential Equation with Application in Population Dynamics,, New York: Academic Press, (1993). Google Scholar

[20]

Y. Kuang and Y. Takeuchi, Predator-prey dynamics in models of prey dispersal in two-patch environments,, Mathematical Biosciences, 120 (1994), 77. doi: 10.1016/0025-5564(94)90038-8. Google Scholar

[21]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434. doi: 10.1137/090779322. Google Scholar

[22]

R. Mchich, P. Auger and J. C. Poggiale, Effect of predator density dependent dispersal of prey on stability of a predator-prey system,, Mathematical Biosciences, 206 (2007), 343. doi: 10.1016/j.mbs.2005.11.005. Google Scholar

[23]

J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications,, Third edition. Interdisciplinary Applied Mathematics, (2003). Google Scholar

[24]

K. Olli, Diel vertical migration of phytoplankton and heterotrophic flagellates in the Gulf of Riga,, Journal of Marine Systems, 23 (1999), 145. doi: 10.1016/S0924-7963(99)00055-X. Google Scholar

[25]

I. L. Pepper, C. P. Gerba and T. J. Gentry, editors, Environmental Microbiology,, Academic Press, (2014). Google Scholar

[26]

P. Pillai, A. Gonzalez and M. Loreau, Evolution of dispersal in a predator-prey metacommunity,, The American Naturalist, 179 (2012), 204. doi: 10.1086/663674. Google Scholar

[27]

T. S. Shores, Applied Linear Algebra and Matrix Analysis,, Springer, (2007). doi: 10.1007/978-0-387-48947-6. Google Scholar

[28]

J. R. Silvester, Determinants of block matrices,, Maths Gazette, 84 (2000), 460. doi: 10.2307/3620776. Google Scholar

[29]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, American Mathematical Society, (1995). Google Scholar

[30]

H. L. Smith and X. Q. Zhao, Robust persistence for semidynamical systems,, Nonlinear Analysis, 47 (2001), 6169. doi: 10.1016/S0362-546X(01)00678-2. Google Scholar

[31]

P. D. Srinivasu and I. L. Gayatri, Influence of prey reserve capacity on predator-prey dynamics,, Ecological Modelling, 181 (2005), 191. doi: 10.1016/j.ecolmodel.2004.06.031. Google Scholar

[32]

X. H. Tang and X. Zou, Global attractivity in a predator-prey system with pure delays,, Proceedings of the Edinburgh Mathematical Society, 51 (2008), 495. doi: 10.1017/S0013091506000988. Google Scholar

[33]

D. Tilman and P. Kareiva, Spatial Ecology,, Princenton University Press, (1997). Google Scholar

[34]

F. Wang, Y. Kuang, C. Ding and S. Zhang, Stability and bifurcation of a stage-structured predator-prey model with both discrete and distributed delays,, Chaos, 46 (2013), 19. doi: 10.1016/j.chaos.2012.10.003. Google Scholar

[35]

Z. Wang and X. Q. Zhao, Global dynamics of a time-delayed dengue transmission model,, Canadian Appl. Math. Quarterly, 20 (2012), 89. Google Scholar

[36]

R. Xu and L. Chen, Persistence and stability for a two-species ratio-dependent predator-prey system with time delay in a two-patch environment,, Computers & Mathematics with Applications, 40 (2000), 577. doi: 10.1016/S0898-1221(00)00181-4. Google Scholar

[37]

C. Xu, X. Tang, M. Liao and X. He, Bifurcation analysis in a delayed Lokta-Volterra predator-prey model with two delays,, Nonlinear Dynamics, 66 (2011), 169. doi: 10.1007/s11071-010-9919-8. Google Scholar

[38]

Y. Yuan and J. Bélair, Threshold dynamics in an SEIRS model with latency and temporary immunity,, Journal of Mathematical Biology, 69 (2014), 875. doi: 10.1007/s00285-013-0720-4. Google Scholar

[1]

J. Gani, R. J. Swift. Prey-predator models with infected prey and predators. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5059-5066. doi: 10.3934/dcds.2013.33.5059

[2]

R. P. Gupta, Peeyush Chandra, Malay Banerjee. Dynamical complexity of a prey-predator model with nonlinear predator harvesting. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 423-443. doi: 10.3934/dcdsb.2015.20.423

[3]

Peter A. Braza. A dominant predator, a predator, and a prey. Mathematical Biosciences & Engineering, 2008, 5 (1) : 61-73. doi: 10.3934/mbe.2008.5.61

[4]

Juan C. Jara, Felipe Rivero. Asymptotic behaviour for prey-predator systems and logistic equations with unbounded time-dependent coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4127-4137. doi: 10.3934/dcds.2014.34.4127

[5]

Meng Zhao, Wan-Tong Li, Jia-Feng Cao. A prey-predator model with a free boundary and sign-changing coefficient in time-periodic environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3295-3316. doi: 10.3934/dcdsb.2017138

[6]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[7]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[8]

Xinfu Chen, Yuanwei Qi, Mingxin Wang. Steady states of a strongly coupled prey-predator model. Conference Publications, 2005, 2005 (Special) : 173-180. doi: 10.3934/proc.2005.2005.173

[9]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[10]

H. Malchow, F.M. Hilker, S.V. Petrovskii. Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 705-711. doi: 10.3934/dcdsb.2004.4.705

[11]

Mingxin Wang, Peter Y. H. Pang. Qualitative analysis of a diffusive variable-territory prey-predator model. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1061-1072. doi: 10.3934/dcds.2009.23.1061

[12]

Tomás Caraballo, Renato Colucci, Luca Guerrini. On a predator prey model with nonlinear harvesting and distributed delay. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2703-2727. doi: 10.3934/cpaa.2018128

[13]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[14]

Komi Messan, Yun Kang. A two patch prey-predator model with multiple foraging strategies in predator: Applications to insects. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 947-976. doi: 10.3934/dcdsb.2017048

[15]

Yun Kang, Sourav Kumar Sasmal, Komi Messan. A two-patch prey-predator model with predator dispersal driven by the predation strength. Mathematical Biosciences & Engineering, 2017, 14 (4) : 843-880. doi: 10.3934/mbe.2017046

[16]

Na Min, Mingxin Wang. Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1721-1737. doi: 10.3934/dcdsb.2018073

[17]

Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172

[18]

Safia Slimani, Paul Raynaud de Fitte, Islam Boussaada. Dynamics of a prey-predator system with modified Leslie-Gower and Holling type Ⅱ schemes incorporating a prey refuge. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5003-5039. doi: 10.3934/dcdsb.2019042

[19]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[20]

Meng Liu, Chuanzhi Bai, Yi Jin. Population dynamical behavior of a two-predator one-prey stochastic model with time delay. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2513-2538. doi: 10.3934/dcds.2017108

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]