May  2016, 21(3): 763-779. doi: 10.3934/dcdsb.2016.21.763

Well-posedness of the two-dimensional generalized Benjamin-Bona-Mahony equation on the upper half plane

1. 

Department of Mathematics, National Central University, Chung-Li 32001, Taiwan

2. 

Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 81148, Taiwan

3. 

Department of Mathematics, Oklahoma State University, Stillwater, OK 74078

4. 

Department of Financial and Computational Mathematics, Providence University, Taichung 43301

Received  April 2014 Revised  September 2015 Published  January 2016

This paper focuses on the two-dimensional Benjamin-Bona-Mahony and Benjamin-Bona-Mahony-Burgers equations with a general flux function. The aim is at the global (in time) well-posedness of the initial-and boundary-value problem for these equations defined in the upper half-plane. Under suitable growth conditions on the flux function, we are able to establish the global well-posedness in a Sobolev class. When the initial- and boundary-data become more regular, the corresponding solutions are shown to be classical. In addition, the continuous dependence on the data is also obtained.
Citation: C. H. Arthur Cheng, John M. Hong, Ying-Chieh Lin, Jiahong Wu, Juan-Ming Yuan. Well-posedness of the two-dimensional generalized Benjamin-Bona-Mahony equation on the upper half plane. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 763-779. doi: 10.3934/dcdsb.2016.21.763
References:
[1]

C. J. Amick, J. L. Bona and M. E. Schonbek, Decay of solutions of some nonlinear wave equations,, J. Differential Equations, 81 (1989), 1. doi: 10.1016/0022-0396(89)90176-9. Google Scholar

[2]

J. Avrin and J. A. Goldstein, Global existence for the Benjamin-Bona-Mahony equation in arbitrary dimensions,, Nonlinear Anal., 9 (1985), 861. doi: 10.1016/0362-546X(85)90023-9. Google Scholar

[3]

J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems,, Proc. Camb. Phil. Soc., 73 (1973), 391. doi: 10.1017/S0305004100076945. Google Scholar

[4]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive system,, Phil. Trans. R. Soc. London., 272 (1972), 47. doi: 10.1098/rsta.1972.0032. Google Scholar

[5]

J. L. Bona and H. Chen, Well-posedness for regularized nonlinear dispersive wave equations,, Discrete Contin. Dyn. Syst., 23 (2009), 1253. doi: 10.3934/dcds.2009.23.1253. Google Scholar

[6]

J. L. Bona, H. Chen, S. M. Sun and B.-Y. Zhang, Approximating initial-value problems with two-point boundary-value problems: BBM-equation,, Bull. Iranian Math. Soc., 36 (2010), 1. Google Scholar

[7]

J. L. Bona, H. Chen, S. M. Sun and B.-Y. Zhang, Comparison of quarter-plane and two-point boundary value problem: The BBM-equation,, Discrete Contin. Dyn. Syst., 13 (2005), 921. doi: 10.3934/dcds.2005.13.921. Google Scholar

[8]

J. L. Bona and V. A. Dougalis, An initial- and boundary-value problem for a model equation for propagation of long waves,, J. Math. Anal. Appl., 75 (1980), 503. doi: 10.1016/0022-247X(80)90098-0. Google Scholar

[9]

J. L. Bona and L. Luo, More results on the decay of solutions to nonlinear, dispersive wave equations,, Discrete Contin. Dyn. Syst., 1 (1995), 151. doi: 10.3934/dcds.1995.1.151. Google Scholar

[10]

J. L. Bona and L. Luo, Initial-boundary value problems for model equations for the propagation of long waves,, Evolution equations (Baton Rouge, (1992), 65. Google Scholar

[11]

J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves,, Phil. Trans. R. Soc. London., 302 (1981), 457. doi: 10.1098/rsta.1981.0178. Google Scholar

[12]

J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation,, Discrete Contin. Dyn. Syst., 23 (2009), 1241. doi: 10.3934/dcds.2009.23.1241. Google Scholar

[13]

J. L. Bona and J. Wu, Temporal growth and eventual periodicity for dispersive wave equations in a quarter plane,, Discrete Contin. Dyn. Syst., 23 (2009), 1141. doi: 10.3934/dcds.2009.23.1141. Google Scholar

[14]

S. E. Buckley and M. C. Leverett, Mechanism of fluid displacements in sands,, Trans. AIME, 146 (1942), 107. doi: 10.2118/942107-G. Google Scholar

[15]

C. Guo and S. Fang, Optimal decay rates of solutions for a multidimensional generalized Benjamin-Bona-Mahony equation,, Nonlinear Anal., 75 (2012), 3385. doi: 10.1016/j.na.2011.12.035. Google Scholar

[16]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag Berlin Heidelberg New York, (2001). Google Scholar

[17]

J. A. Goldstein and B. J. Wichnoski, On the Benjamin-Bona-Mahony equation in higher dimensions,, Nonlinear Anal., 4 (1980), 665. doi: 10.1016/0362-546X(80)90067-X. Google Scholar

[18]

J.-M. Hong, J. Wu and J.-M. Yuan, A new solution representation for the BBM equation in a quarter plane and the eventual periodicity,, Nonlinearity, 22 (2009), 1927. doi: 10.1088/0951-7715/22/8/009. Google Scholar

[19]

G. Karch, Asymptotic behaviour of solutions to some pseudoparabolic equations,, Math. Methods Appl. Sci., 20 (1997), 271. doi: 10.1002/(SICI)1099-1476(199702)20:3<271::AID-MMA859>3.0.CO;2-F. Google Scholar

[20]

M. Mei, $L_q$-decay rates of solutions for Benjamin-Bona-Mahony-Burgers equations,, J. Differential Equations, 158 (1999), 314. doi: 10.1006/jdeq.1999.3638. Google Scholar

[21]

Y. Martel, F. Merle and T. Mizumachi, Description of the inelastic collision of two solitary waves for the BBM equation,, Arch. Rational Mech. Anal., 196 (2010), 517. doi: 10.1007/s00205-009-0244-7. Google Scholar

show all references

References:
[1]

C. J. Amick, J. L. Bona and M. E. Schonbek, Decay of solutions of some nonlinear wave equations,, J. Differential Equations, 81 (1989), 1. doi: 10.1016/0022-0396(89)90176-9. Google Scholar

[2]

J. Avrin and J. A. Goldstein, Global existence for the Benjamin-Bona-Mahony equation in arbitrary dimensions,, Nonlinear Anal., 9 (1985), 861. doi: 10.1016/0362-546X(85)90023-9. Google Scholar

[3]

J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems,, Proc. Camb. Phil. Soc., 73 (1973), 391. doi: 10.1017/S0305004100076945. Google Scholar

[4]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive system,, Phil. Trans. R. Soc. London., 272 (1972), 47. doi: 10.1098/rsta.1972.0032. Google Scholar

[5]

J. L. Bona and H. Chen, Well-posedness for regularized nonlinear dispersive wave equations,, Discrete Contin. Dyn. Syst., 23 (2009), 1253. doi: 10.3934/dcds.2009.23.1253. Google Scholar

[6]

J. L. Bona, H. Chen, S. M. Sun and B.-Y. Zhang, Approximating initial-value problems with two-point boundary-value problems: BBM-equation,, Bull. Iranian Math. Soc., 36 (2010), 1. Google Scholar

[7]

J. L. Bona, H. Chen, S. M. Sun and B.-Y. Zhang, Comparison of quarter-plane and two-point boundary value problem: The BBM-equation,, Discrete Contin. Dyn. Syst., 13 (2005), 921. doi: 10.3934/dcds.2005.13.921. Google Scholar

[8]

J. L. Bona and V. A. Dougalis, An initial- and boundary-value problem for a model equation for propagation of long waves,, J. Math. Anal. Appl., 75 (1980), 503. doi: 10.1016/0022-247X(80)90098-0. Google Scholar

[9]

J. L. Bona and L. Luo, More results on the decay of solutions to nonlinear, dispersive wave equations,, Discrete Contin. Dyn. Syst., 1 (1995), 151. doi: 10.3934/dcds.1995.1.151. Google Scholar

[10]

J. L. Bona and L. Luo, Initial-boundary value problems for model equations for the propagation of long waves,, Evolution equations (Baton Rouge, (1992), 65. Google Scholar

[11]

J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves,, Phil. Trans. R. Soc. London., 302 (1981), 457. doi: 10.1098/rsta.1981.0178. Google Scholar

[12]

J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation,, Discrete Contin. Dyn. Syst., 23 (2009), 1241. doi: 10.3934/dcds.2009.23.1241. Google Scholar

[13]

J. L. Bona and J. Wu, Temporal growth and eventual periodicity for dispersive wave equations in a quarter plane,, Discrete Contin. Dyn. Syst., 23 (2009), 1141. doi: 10.3934/dcds.2009.23.1141. Google Scholar

[14]

S. E. Buckley and M. C. Leverett, Mechanism of fluid displacements in sands,, Trans. AIME, 146 (1942), 107. doi: 10.2118/942107-G. Google Scholar

[15]

C. Guo and S. Fang, Optimal decay rates of solutions for a multidimensional generalized Benjamin-Bona-Mahony equation,, Nonlinear Anal., 75 (2012), 3385. doi: 10.1016/j.na.2011.12.035. Google Scholar

[16]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag Berlin Heidelberg New York, (2001). Google Scholar

[17]

J. A. Goldstein and B. J. Wichnoski, On the Benjamin-Bona-Mahony equation in higher dimensions,, Nonlinear Anal., 4 (1980), 665. doi: 10.1016/0362-546X(80)90067-X. Google Scholar

[18]

J.-M. Hong, J. Wu and J.-M. Yuan, A new solution representation for the BBM equation in a quarter plane and the eventual periodicity,, Nonlinearity, 22 (2009), 1927. doi: 10.1088/0951-7715/22/8/009. Google Scholar

[19]

G. Karch, Asymptotic behaviour of solutions to some pseudoparabolic equations,, Math. Methods Appl. Sci., 20 (1997), 271. doi: 10.1002/(SICI)1099-1476(199702)20:3<271::AID-MMA859>3.0.CO;2-F. Google Scholar

[20]

M. Mei, $L_q$-decay rates of solutions for Benjamin-Bona-Mahony-Burgers equations,, J. Differential Equations, 158 (1999), 314. doi: 10.1006/jdeq.1999.3638. Google Scholar

[21]

Y. Martel, F. Merle and T. Mizumachi, Description of the inelastic collision of two solitary waves for the BBM equation,, Arch. Rational Mech. Anal., 196 (2010), 517. doi: 10.1007/s00205-009-0244-7. Google Scholar

[1]

Vishal Vasan, Bernard Deconinck. Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3171-3188. doi: 10.3934/dcds.2013.33.3171

[2]

Hui Yin, Huijiang Zhao. Nonlinear stability of boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equation in the half space. Kinetic & Related Models, 2009, 2 (3) : 521-550. doi: 10.3934/krm.2009.2.521

[3]

Milena Stanislavova. On the global attractor for the damped Benjamin-Bona-Mahony equation. Conference Publications, 2005, 2005 (Special) : 824-832. doi: 10.3934/proc.2005.2005.824

[4]

Anne-Sophie de Suzzoni. Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2905-2920. doi: 10.3934/dcds.2015.35.2905

[5]

Khaled El Dika. Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 583-622. doi: 10.3934/dcds.2005.13.583

[6]

Wenxia Chen, Ping Yang, Weiwei Gao, Lixin Tian. The approximate solution for Benjamin-Bona-Mahony equation under slowly varying medium. Communications on Pure & Applied Analysis, 2018, 17 (3) : 823-848. doi: 10.3934/cpaa.2018042

[7]

Jaime Angulo Pava, Carlos Banquet, Márcia Scialom. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 851-871. doi: 10.3934/dcds.2011.30.851

[8]

Yangrong Li, Renhai Wang, Jinyan Yin. Backward compact attractors for non-autonomous Benjamin-Bona-Mahony equations on unbounded channels. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2569-2586. doi: 10.3934/dcdsb.2017092

[9]

Peng Gao. Unique continuation property for stochastic nonclassical diffusion equations and stochastic linearized Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2493-2510. doi: 10.3934/dcdsb.2018262

[10]

Jerry L. Bona, Laihan Luo. Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 15-50. doi: 10.3934/dcdss.2011.4.15

[11]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[12]

Francis Ribaud, Stéphane Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 449-483. doi: 10.3934/dcds.2017019

[13]

Anya Désilles, Hélène Frankowska. Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks & Heterogeneous Media, 2013, 8 (3) : 727-744. doi: 10.3934/nhm.2013.8.727

[14]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[15]

Martn P. Árciga Alejandre, Elena I. Kaikina. Mixed initial-boundary value problem for Ott-Sudan-Ostrovskiy equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 381-409. doi: 10.3934/dcds.2012.32.381

[16]

Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148

[17]

Dongfeng Yan. KAM Tori for generalized Benjamin-Ono equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 941-957. doi: 10.3934/cpaa.2015.14.941

[18]

Jerry Bona, H. Kalisch. Singularity formation in the generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 27-45. doi: 10.3934/dcds.2004.11.27

[19]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[20]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

[Back to Top]