• Previous Article
    Well-posedness of the two-dimensional generalized Benjamin-Bona-Mahony equation on the upper half plane
  • DCDS-B Home
  • This Issue
  • Next Article
    Coexistence equilibria of evolutionary games on graphs under deterministic imitation dynamics
May  2016, 21(3): 781-801. doi: 10.3934/dcdsb.2016.21.781

Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms

1. 

School of Mathematics and Information Science, Guangzhou University, Guangzhou, Guangdong 510006, China, China, China

Received  April 2015 Revised  October 2015 Published  January 2016

In this paper, we consider the initial boundary value problem for a fourth order pseudo-parabolic equation with memory and source terms. Under suitable assumptions on the function $g$, the initial data and the parameters in the equation, we not only prove the existence of global weak solutions by the combination of the Galerkin method and potential well theory, but also establish an explicit decay rate estimate of the energy adopting the ideas of Marcelo M. Cavalcanti et al. (J. Differ. Equations 203 (2004) 119-158) and Patrick Martinez (ESAIN: Control Optim. Calc. Var. 4 (1999) 419-444). Furthermore, the finite time blow up results for the solutions with both positive and negative initial energy are obtained under certain conditions.
Citation: Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781
References:
[1]

A. B. Al'shin, M. O. Korpusov and A. G. Siveshnikov, Blow up in Nonlinear Sobolev Type Equations,, De Gruyter Series in Nonlinear Aanlysis and Applicationss 15, (2011). doi: 10.1515/9783110255294. Google Scholar

[2]

A. Y. Kolesov, E. F. Mishchenko and N. K. Rozov, Asymptotic methods of investiga-tion of periodic solutions of nonlinear hyperbolic equations,, Trudy Mat. Inst. Steklova, 222 (1998). Google Scholar

[3]

B. K. Shivamoggi, A symmetric regularized long wave equation for shallow water waves,, Phys. Fluids, 29 (1986), 890. doi: 10.1063/1.865895. Google Scholar

[4]

P. Rosenau, Evolution and breaking of the ion-acoustic waves,, Phys. Fluids, 31 (1988), 1317. doi: 10.1063/1.866723. Google Scholar

[5]

R. E. Showalter and T. W. Ting, Pseudo-parabolic partial differential equations,, SIAM J. Math. Anal., 1 (1970), 1. doi: 10.1137/0501001. Google Scholar

[6]

V. R. Gopala Rao and T. W. Ting, Solutions of pseudo-heat equations in the whole space,, Arch. Ration. Mech. Anal., 49 (1972), 57. doi: 10.1007/BF00281474. Google Scholar

[7]

E. Milne, The diffusion of imprisoned radiation through a gas,, J. Lond. Math. Soc., 1 (1926), 40. doi: 10.1112/jlms/s1-1.1.40. Google Scholar

[8]

S. M. Hassanizadeh and W. G. Gray, Thermodynamic basis of capillary pressure in porous media,, Water Resour. Res., 29 (1993), 3389. doi: 10.1029/93WR01495. Google Scholar

[9]

L. Cueto-Felgueroso and R. Juanes, A phase-field model of unsaturated flow,, Water Resour. Res., 45 (2009). doi: 10.1029/2009WR007945. Google Scholar

[10]

L. I. Rubinstein, On the problem of the process of propagation of heat in heterogeneous media,, IZV. Akad. Nauk SSSR, 12 (1948), 27. Google Scholar

[11]

B. C. Aslan, W. W. Hager and S. Moskow, A generalized eigenproblem for the Laplacian which arises in lightning,, J. Math. Anal. Appl., 341 (2008), 1028. doi: 10.1016/j.jmaa.2007.11.007. Google Scholar

[12]

R. E. Showalter, Existence and representation theorems for a semilinear Sobolev equation in Banach space,, SIAM J. Math. Anal., 3 (1972), 527. doi: 10.1137/0503051. Google Scholar

[13]

R. E. Showalter, Nonlinear degenerate evolution equations and partial differential equations of mixed type,, SIAM J. Math. Anal., 6 (1975), 25. doi: 10.1137/0506004. Google Scholar

[14]

E. Di Benedetto and R. E. Showalter, Implicit degenerate evolution equations and applications,, SIAM J. Math. Anal., 12 (1981), 731. doi: 10.1137/0512062. Google Scholar

[15]

A. Mikelić, A global existence result for the equations describing unsaturated flow in porous media with dynamic capillary pressure,, J. Differ. Equations, 248 (2010), 1561. doi: 10.1016/j.jde.2009.11.022. Google Scholar

[16]

X. Cao and I. S. Pop, Two-phase porous media flows with dynamic capillary effects and hysteresis: Uniqueness of weak solutions,, Comput. Math. Appl., 69 (2015), 688. doi: 10.1016/j.camwa.2015.02.009. Google Scholar

[17]

Y. Fan and I. S. Pop, Equivalent formulations and numerical schemes for a class of pseudo-parabolic equations,, J. Comput. Appl. Math., 246 (2013), 86. doi: 10.1016/j.cam.2012.07.031. Google Scholar

[18]

C. M. Cuesta and I. S. Pop, Numerical schemes for a pseudo-parabolic Burgers equation: Discontinuous data and long-time behaviour,, J. Comput. Appl. Math., 224 (2009), 269. doi: 10.1016/j.cam.2008.05.001. Google Scholar

[19]

B. Schweizer, Regularization of outflow problems in unsaturated porous media with dry regions,, J. Differ. Equations, 237 (2007), 278. doi: 10.1016/j.jde.2007.03.011. Google Scholar

[20]

E. I. Kaikina, P. I. Naumkin and I. A. Shishmarev, Periodic boundary value problem for nonlinear Sobolev-type equation,, Funct. Anal. Appl., 44 (2010), 171. doi: 10.1007/s10688-010-0022-1. Google Scholar

[21]

E. I. Kaikina, Initial boundary value problems for nonlinear pseudo-parabolic equations in a critical case,, Electron. J. Differ. Equations, 109 (2007), 1. Google Scholar

[22]

T. Matahashi and M. Tsutsumi, On a periodic problem for pseudo-parabolic equations of Sobolev-Galpen type,, Mathematica Japonica, 22 (1978), 535. Google Scholar

[23]

T. Matahashi and M. Tsutsumi, Periodic solutions of semilinear pseudo-parabolic equations in Hilbert space,, Funkc. Ekvacioj, 22 (1979), 51. Google Scholar

[24]

R. Z. Xu and J. Su, Global existence and finite time blow up for a class of semilinear pseudo-parabolic equations,, J. Funct. Anal., 264 (2013), 2732. doi: 10.1016/j.jfa.2013.03.010. Google Scholar

[25]

N. I. Bakiyevich and G. A. Shadrin, Cauchy problem for an equation in filtration theory,, Sb. Trudov Mosgospedinstituta, 7 (1978), 47. Google Scholar

[26]

K. I. Khudaverdiyev and G. M. Farhadova, On global existence for generalized solution of one-dimensional non-self-adjoint mixed problem for a class of fourth order semilinear pseudo-parabolic equations,, Proc. Inst. Math. Mech., 31 (2009), 119. Google Scholar

[27]

H. J. Zhao and B. J. Xuan, Existence and convergence of solutions for the generalized BBM-Burgers equations,, Nonlinear Anal. Theory Methods Appl., 28 (1997), 1835. doi: 10.1016/S0362-546X(95)00237-P. Google Scholar

[28]

H. M. Yin, Weak and classical solutions of some nonlinear volterra intergro-differential equations,, Commun. Part. Diff. Eq., 17 (1992), 1369. doi: 10.1080/03605309208820889. Google Scholar

[29]

S. A. Messaoudi, Blow-up of solutions of a semilinear Heat Equation with a Visco-elastic Term,, Progr. Nonlinear Differ. Equ. Appl., 64 (2005), 351. doi: 10.1007/3-7643-7385-7_19. Google Scholar

[30]

Y. D. Shang and B. L. Guo, On the problem of the existence of global solutions for a class of nonlinear convolutional integro-differential equations of pseudoparabolic type,, Acta Math. Appl. Sin., 26 (2003), 511. Google Scholar

[31]

Y. D. Shang and B. L. Guo, Initial boundary value problem and initial value problem for the nonlinear integro-differential equations of pseudoparabolic type,, Math. Appl.(Wuhan) 15 (2002), 15 (2002), 40. Google Scholar

[32]

Y. D. Shang and B. L. Guo, Initial boundary value problem for a class of quasilinear integro-differential equations of pseudoparabolic type,, Chin. J. Eng. Math., 20 (2003), 1. Google Scholar

[33]

M. Ptashnyk, Degenerate quasilinear pseudoparabolic equations with memory terms and variational inequalities,, Nonlinear Anal. Theory Methods Appl., 66 (2007), 2653. doi: 10.1016/j.na.2006.03.046. Google Scholar

[34]

R. W. Carroll and R. E. Showalter, Singular and Degenerate Cauchy Problems,, Academic Press, (1976). Google Scholar

[35]

S. N. Antontsev, G. Gagneux, R. Luce and G. Vallet, New unilateral problems in stratigraphy,, M2AN Math. Model. Numer. Anal., 40 (2006), 765. doi: 10.1051/m2an:2006029. Google Scholar

[36]

S. N. Antontsev, G. Gagneux, R. Luce and G. Vallet, On a pseudoparabolic problem with constraint,, Differ. integral Equ., 19 (2006), 1391. Google Scholar

[37]

G. Vallet, On a degenerated parabolic-hyperbolic problem arising from stratigraphy,, Numerical Mathematics and Advanced Applications, (2006), 412. doi: 10.1007/978-3-540-34288-5_36. Google Scholar

[38]

N. Igbida, Solutions auto-similaires pour une équation de Barenblatt,, Rev. Math. Appl., 17 (1996), 21. Google Scholar

[39]

C. Bauzet, J. Giacomoni and G. Vallet, On a class of quasilinear Barenblatt equations,, Monografías de la Real Academia de Ciencias de Zaragoza, 38 (2012), 35. Google Scholar

[40]

M. Ptashnyk, Nonlinear Pseudoparabolic Equations and Variational Inequalities,, Master's Thesis, (2004). Google Scholar

[41]

N. Seam and G. Vallet, Existence results for nonlinear pseudoparabolic problems,, Nonlinear Anal. Real World Appl., 12 (2011), 2625. doi: 10.1016/j.nonrwa.2011.03.010. Google Scholar

[42]

M. M. Cavalcanti, V. N. D. Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term,, J. Differ. Equations, 203 (2004), 119. doi: 10.1016/j.jde.2004.04.011. Google Scholar

[43]

P. Martinez, A new method to obtain decay rate estimates for dissipative systems,, ESAIN: Control Optim. Calc. Var., 4 (1999), 419. doi: 10.1051/cocv:1999116. Google Scholar

[44]

J. L. Lions, Quelques Méthodes de Résolutions des Probléms aux Limites Non Linéaires,, Dunod, (1969). Google Scholar

[45]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975). Google Scholar

[46]

I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping,, Differ. integral Equ., 6 (1933), 507. Google Scholar

show all references

References:
[1]

A. B. Al'shin, M. O. Korpusov and A. G. Siveshnikov, Blow up in Nonlinear Sobolev Type Equations,, De Gruyter Series in Nonlinear Aanlysis and Applicationss 15, (2011). doi: 10.1515/9783110255294. Google Scholar

[2]

A. Y. Kolesov, E. F. Mishchenko and N. K. Rozov, Asymptotic methods of investiga-tion of periodic solutions of nonlinear hyperbolic equations,, Trudy Mat. Inst. Steklova, 222 (1998). Google Scholar

[3]

B. K. Shivamoggi, A symmetric regularized long wave equation for shallow water waves,, Phys. Fluids, 29 (1986), 890. doi: 10.1063/1.865895. Google Scholar

[4]

P. Rosenau, Evolution and breaking of the ion-acoustic waves,, Phys. Fluids, 31 (1988), 1317. doi: 10.1063/1.866723. Google Scholar

[5]

R. E. Showalter and T. W. Ting, Pseudo-parabolic partial differential equations,, SIAM J. Math. Anal., 1 (1970), 1. doi: 10.1137/0501001. Google Scholar

[6]

V. R. Gopala Rao and T. W. Ting, Solutions of pseudo-heat equations in the whole space,, Arch. Ration. Mech. Anal., 49 (1972), 57. doi: 10.1007/BF00281474. Google Scholar

[7]

E. Milne, The diffusion of imprisoned radiation through a gas,, J. Lond. Math. Soc., 1 (1926), 40. doi: 10.1112/jlms/s1-1.1.40. Google Scholar

[8]

S. M. Hassanizadeh and W. G. Gray, Thermodynamic basis of capillary pressure in porous media,, Water Resour. Res., 29 (1993), 3389. doi: 10.1029/93WR01495. Google Scholar

[9]

L. Cueto-Felgueroso and R. Juanes, A phase-field model of unsaturated flow,, Water Resour. Res., 45 (2009). doi: 10.1029/2009WR007945. Google Scholar

[10]

L. I. Rubinstein, On the problem of the process of propagation of heat in heterogeneous media,, IZV. Akad. Nauk SSSR, 12 (1948), 27. Google Scholar

[11]

B. C. Aslan, W. W. Hager and S. Moskow, A generalized eigenproblem for the Laplacian which arises in lightning,, J. Math. Anal. Appl., 341 (2008), 1028. doi: 10.1016/j.jmaa.2007.11.007. Google Scholar

[12]

R. E. Showalter, Existence and representation theorems for a semilinear Sobolev equation in Banach space,, SIAM J. Math. Anal., 3 (1972), 527. doi: 10.1137/0503051. Google Scholar

[13]

R. E. Showalter, Nonlinear degenerate evolution equations and partial differential equations of mixed type,, SIAM J. Math. Anal., 6 (1975), 25. doi: 10.1137/0506004. Google Scholar

[14]

E. Di Benedetto and R. E. Showalter, Implicit degenerate evolution equations and applications,, SIAM J. Math. Anal., 12 (1981), 731. doi: 10.1137/0512062. Google Scholar

[15]

A. Mikelić, A global existence result for the equations describing unsaturated flow in porous media with dynamic capillary pressure,, J. Differ. Equations, 248 (2010), 1561. doi: 10.1016/j.jde.2009.11.022. Google Scholar

[16]

X. Cao and I. S. Pop, Two-phase porous media flows with dynamic capillary effects and hysteresis: Uniqueness of weak solutions,, Comput. Math. Appl., 69 (2015), 688. doi: 10.1016/j.camwa.2015.02.009. Google Scholar

[17]

Y. Fan and I. S. Pop, Equivalent formulations and numerical schemes for a class of pseudo-parabolic equations,, J. Comput. Appl. Math., 246 (2013), 86. doi: 10.1016/j.cam.2012.07.031. Google Scholar

[18]

C. M. Cuesta and I. S. Pop, Numerical schemes for a pseudo-parabolic Burgers equation: Discontinuous data and long-time behaviour,, J. Comput. Appl. Math., 224 (2009), 269. doi: 10.1016/j.cam.2008.05.001. Google Scholar

[19]

B. Schweizer, Regularization of outflow problems in unsaturated porous media with dry regions,, J. Differ. Equations, 237 (2007), 278. doi: 10.1016/j.jde.2007.03.011. Google Scholar

[20]

E. I. Kaikina, P. I. Naumkin and I. A. Shishmarev, Periodic boundary value problem for nonlinear Sobolev-type equation,, Funct. Anal. Appl., 44 (2010), 171. doi: 10.1007/s10688-010-0022-1. Google Scholar

[21]

E. I. Kaikina, Initial boundary value problems for nonlinear pseudo-parabolic equations in a critical case,, Electron. J. Differ. Equations, 109 (2007), 1. Google Scholar

[22]

T. Matahashi and M. Tsutsumi, On a periodic problem for pseudo-parabolic equations of Sobolev-Galpen type,, Mathematica Japonica, 22 (1978), 535. Google Scholar

[23]

T. Matahashi and M. Tsutsumi, Periodic solutions of semilinear pseudo-parabolic equations in Hilbert space,, Funkc. Ekvacioj, 22 (1979), 51. Google Scholar

[24]

R. Z. Xu and J. Su, Global existence and finite time blow up for a class of semilinear pseudo-parabolic equations,, J. Funct. Anal., 264 (2013), 2732. doi: 10.1016/j.jfa.2013.03.010. Google Scholar

[25]

N. I. Bakiyevich and G. A. Shadrin, Cauchy problem for an equation in filtration theory,, Sb. Trudov Mosgospedinstituta, 7 (1978), 47. Google Scholar

[26]

K. I. Khudaverdiyev and G. M. Farhadova, On global existence for generalized solution of one-dimensional non-self-adjoint mixed problem for a class of fourth order semilinear pseudo-parabolic equations,, Proc. Inst. Math. Mech., 31 (2009), 119. Google Scholar

[27]

H. J. Zhao and B. J. Xuan, Existence and convergence of solutions for the generalized BBM-Burgers equations,, Nonlinear Anal. Theory Methods Appl., 28 (1997), 1835. doi: 10.1016/S0362-546X(95)00237-P. Google Scholar

[28]

H. M. Yin, Weak and classical solutions of some nonlinear volterra intergro-differential equations,, Commun. Part. Diff. Eq., 17 (1992), 1369. doi: 10.1080/03605309208820889. Google Scholar

[29]

S. A. Messaoudi, Blow-up of solutions of a semilinear Heat Equation with a Visco-elastic Term,, Progr. Nonlinear Differ. Equ. Appl., 64 (2005), 351. doi: 10.1007/3-7643-7385-7_19. Google Scholar

[30]

Y. D. Shang and B. L. Guo, On the problem of the existence of global solutions for a class of nonlinear convolutional integro-differential equations of pseudoparabolic type,, Acta Math. Appl. Sin., 26 (2003), 511. Google Scholar

[31]

Y. D. Shang and B. L. Guo, Initial boundary value problem and initial value problem for the nonlinear integro-differential equations of pseudoparabolic type,, Math. Appl.(Wuhan) 15 (2002), 15 (2002), 40. Google Scholar

[32]

Y. D. Shang and B. L. Guo, Initial boundary value problem for a class of quasilinear integro-differential equations of pseudoparabolic type,, Chin. J. Eng. Math., 20 (2003), 1. Google Scholar

[33]

M. Ptashnyk, Degenerate quasilinear pseudoparabolic equations with memory terms and variational inequalities,, Nonlinear Anal. Theory Methods Appl., 66 (2007), 2653. doi: 10.1016/j.na.2006.03.046. Google Scholar

[34]

R. W. Carroll and R. E. Showalter, Singular and Degenerate Cauchy Problems,, Academic Press, (1976). Google Scholar

[35]

S. N. Antontsev, G. Gagneux, R. Luce and G. Vallet, New unilateral problems in stratigraphy,, M2AN Math. Model. Numer. Anal., 40 (2006), 765. doi: 10.1051/m2an:2006029. Google Scholar

[36]

S. N. Antontsev, G. Gagneux, R. Luce and G. Vallet, On a pseudoparabolic problem with constraint,, Differ. integral Equ., 19 (2006), 1391. Google Scholar

[37]

G. Vallet, On a degenerated parabolic-hyperbolic problem arising from stratigraphy,, Numerical Mathematics and Advanced Applications, (2006), 412. doi: 10.1007/978-3-540-34288-5_36. Google Scholar

[38]

N. Igbida, Solutions auto-similaires pour une équation de Barenblatt,, Rev. Math. Appl., 17 (1996), 21. Google Scholar

[39]

C. Bauzet, J. Giacomoni and G. Vallet, On a class of quasilinear Barenblatt equations,, Monografías de la Real Academia de Ciencias de Zaragoza, 38 (2012), 35. Google Scholar

[40]

M. Ptashnyk, Nonlinear Pseudoparabolic Equations and Variational Inequalities,, Master's Thesis, (2004). Google Scholar

[41]

N. Seam and G. Vallet, Existence results for nonlinear pseudoparabolic problems,, Nonlinear Anal. Real World Appl., 12 (2011), 2625. doi: 10.1016/j.nonrwa.2011.03.010. Google Scholar

[42]

M. M. Cavalcanti, V. N. D. Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term,, J. Differ. Equations, 203 (2004), 119. doi: 10.1016/j.jde.2004.04.011. Google Scholar

[43]

P. Martinez, A new method to obtain decay rate estimates for dissipative systems,, ESAIN: Control Optim. Calc. Var., 4 (1999), 419. doi: 10.1051/cocv:1999116. Google Scholar

[44]

J. L. Lions, Quelques Méthodes de Résolutions des Probléms aux Limites Non Linéaires,, Dunod, (1969). Google Scholar

[45]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975). Google Scholar

[46]

I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping,, Differ. integral Equ., 6 (1933), 507. Google Scholar

[1]

Xiaoli Zhu, Fuyi Li, Ting Rong. Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2465-2485. doi: 10.3934/cpaa.2015.14.2465

[2]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[3]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[4]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[5]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[6]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[7]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations & Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[8]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[9]

Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171

[10]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[11]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[12]

Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2291-2300. doi: 10.3934/dcdsb.2017096

[13]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[14]

Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933

[15]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[16]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[17]

Giuseppe Floridia. Well-posedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455-463. doi: 10.3934/proc.2015.0455

[18]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[19]

S. Gatti, Elena Sartori. Well-posedness results for phase field systems with memory effects in the order parameter dynamics. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 705-726. doi: 10.3934/dcds.2003.9.705

[20]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]