May  2016, 21(3): 803-813. doi: 10.3934/dcdsb.2016.21.803

Coexistence equilibria of evolutionary games on graphs under deterministic imitation dynamics

1. 

Center for Dynamics & Institute for Analysis, Dept. of Mathematics, Technische Universitat Dresden, 01062, Dresden, Germany, Germany

2. 

Dept. of Mathematics and NTIS, Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, 30614 Pilsen, Pilsen, Czech Republic, Czech Republic

Received  July 2015 Revised  November 2015 Published  January 2016

Cooperative behaviour is often accompanied by the incentives to defect, i.e., to reap the benefits of others' efforts without own contribution. We provide evidence that cooperation and defection can coexist under very broad conditions in the framework of evolutionary games on graphs under deterministic imitation dynamics. Namely, we show that for all graphs there exist coexistence equilibria for certain game-theoretical parameters. Similarly, for all relevant game-theoretical parameters there exists a graph yielding coexistence equilibria. Our proofs are constructive and robust with respect to various utility functions which can be considered. Finally, we briefly discuss bounds for the number of coexistence equilibria.
Citation: Jeremias Epperlein, Stefan Siegmund, Petr Stehlík, Vladimír  Švígler. Coexistence equilibria of evolutionary games on graphs under deterministic imitation dynamics. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 803-813. doi: 10.3934/dcdsb.2016.21.803
References:
[1]

R. Albert and A.-L. Barabási, Statistical mechanics of complex networks,, Rev. Mod. Phys., 74 (2002), 47.  doi: 10.1103/RevModPhys.74.47.  Google Scholar

[2]

M. Broom and J. Rychtář, An analysis of the fixation probability of a mutant on special classes of non-directed graphs,, Proc. Royal. Soc., 464 (2008), 2609.  doi: 10.1098/rspa.2008.0058.  Google Scholar

[3]

M. Broom, C. Hadjichrysanthou, J. Rychtář and B. T. Stadler, Two results on evolutionary processes on general non-directed graphs,, Proc. Royal. Soc., 466 (2010), 2795.  doi: 10.1098/rspa.2010.0067.  Google Scholar

[4]

T. Clutton-Brock, Cooperation between non-kin in animal societies,, Nature, 462 (2009), 51.  doi: 10.1038/nature08366.  Google Scholar

[5]

J. Epperlein, S. Siegmund and P. Stehlík, Evolutionary games on graphs and discrete dynamical systems,, J. Difference Eq. Appl., 21 (2015), 72.  doi: 10.1080/10236198.2014.988618.  Google Scholar

[6]

W. D. Hamilton, The genetical evolution of social behaviour,, J. Theor. Biol., 7 (1964), 1.  doi: 10.1016/0022-5193(64)90038-4.  Google Scholar

[7]

C. Hauert and M. Doebeli, Spatial structure often inhibits the evolution of cooperation in the snowdrift game,, Nature, 428 (2004), 643.  doi: 10.1038/nature02360.  Google Scholar

[8]

J. Hofbauer and K. Sigmund, Evolutionary game dynamics,, Bull. Amer. Math. Soc., 40 (2003), 479.  doi: 10.1090/S0273-0979-03-00988-1.  Google Scholar

[9]

J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems,, Cambridge University Press, (1988).   Google Scholar

[10]

J. Libich and P. Stehlík, Monetary policy facing fiscal indiscipline under generalized timing of actions,, Journal of Institutional and Theoretical Economics, 168 (2012), 393.  doi: 10.1628/093245612802920962.  Google Scholar

[11]

J. Maynard Smith, The theory of games and the evolution of animal conflicts,, Journal of Theoretical Biology, 47 (1974), 209.  doi: 10.1016/0022-5193(74)90110-6.  Google Scholar

[12]

M. A. Nowak, Five rules for the evolution of cooperation,, Science, 314 (2006), 1560.  doi: 10.1126/science.1133755.  Google Scholar

[13]

M. A. Nowak and R. M. May, Evolutionary games and spatial chaos,, Nature, 359 (1992), 826.  doi: 10.1038/359826a0.  Google Scholar

[14]

H. Ohtsuki and M. A. Nowak, Evolutionary games on cycles,, Proc. R. Soc. B, 273 (2006), 2249.  doi: 10.1098/rspb.2006.3576.  Google Scholar

[15]

H. Ohtsuki and M. A. Nowak, Evolutionary stability on graphs,, Journal of Theoretical Biology, 251 (2008), 698.  doi: 10.1016/j.jtbi.2008.01.005.  Google Scholar

[16]

G. Szabó and G. Fáth, Evolutionary games on graphs,, Phys. Rep., 446 (2007), 97.  doi: 10.1016/j.physrep.2007.04.004.  Google Scholar

show all references

References:
[1]

R. Albert and A.-L. Barabási, Statistical mechanics of complex networks,, Rev. Mod. Phys., 74 (2002), 47.  doi: 10.1103/RevModPhys.74.47.  Google Scholar

[2]

M. Broom and J. Rychtář, An analysis of the fixation probability of a mutant on special classes of non-directed graphs,, Proc. Royal. Soc., 464 (2008), 2609.  doi: 10.1098/rspa.2008.0058.  Google Scholar

[3]

M. Broom, C. Hadjichrysanthou, J. Rychtář and B. T. Stadler, Two results on evolutionary processes on general non-directed graphs,, Proc. Royal. Soc., 466 (2010), 2795.  doi: 10.1098/rspa.2010.0067.  Google Scholar

[4]

T. Clutton-Brock, Cooperation between non-kin in animal societies,, Nature, 462 (2009), 51.  doi: 10.1038/nature08366.  Google Scholar

[5]

J. Epperlein, S. Siegmund and P. Stehlík, Evolutionary games on graphs and discrete dynamical systems,, J. Difference Eq. Appl., 21 (2015), 72.  doi: 10.1080/10236198.2014.988618.  Google Scholar

[6]

W. D. Hamilton, The genetical evolution of social behaviour,, J. Theor. Biol., 7 (1964), 1.  doi: 10.1016/0022-5193(64)90038-4.  Google Scholar

[7]

C. Hauert and M. Doebeli, Spatial structure often inhibits the evolution of cooperation in the snowdrift game,, Nature, 428 (2004), 643.  doi: 10.1038/nature02360.  Google Scholar

[8]

J. Hofbauer and K. Sigmund, Evolutionary game dynamics,, Bull. Amer. Math. Soc., 40 (2003), 479.  doi: 10.1090/S0273-0979-03-00988-1.  Google Scholar

[9]

J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems,, Cambridge University Press, (1988).   Google Scholar

[10]

J. Libich and P. Stehlík, Monetary policy facing fiscal indiscipline under generalized timing of actions,, Journal of Institutional and Theoretical Economics, 168 (2012), 393.  doi: 10.1628/093245612802920962.  Google Scholar

[11]

J. Maynard Smith, The theory of games and the evolution of animal conflicts,, Journal of Theoretical Biology, 47 (1974), 209.  doi: 10.1016/0022-5193(74)90110-6.  Google Scholar

[12]

M. A. Nowak, Five rules for the evolution of cooperation,, Science, 314 (2006), 1560.  doi: 10.1126/science.1133755.  Google Scholar

[13]

M. A. Nowak and R. M. May, Evolutionary games and spatial chaos,, Nature, 359 (1992), 826.  doi: 10.1038/359826a0.  Google Scholar

[14]

H. Ohtsuki and M. A. Nowak, Evolutionary games on cycles,, Proc. R. Soc. B, 273 (2006), 2249.  doi: 10.1098/rspb.2006.3576.  Google Scholar

[15]

H. Ohtsuki and M. A. Nowak, Evolutionary stability on graphs,, Journal of Theoretical Biology, 251 (2008), 698.  doi: 10.1016/j.jtbi.2008.01.005.  Google Scholar

[16]

G. Szabó and G. Fáth, Evolutionary games on graphs,, Phys. Rep., 446 (2007), 97.  doi: 10.1016/j.physrep.2007.04.004.  Google Scholar

[1]

Jeremias Epperlein, Vladimír Švígler. On arbitrarily long periodic orbits of evolutionary games on graphs. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1895-1915. doi: 10.3934/dcdsb.2018187

[2]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic & Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[3]

Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981

[4]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[5]

King-Yeung Lam. Dirac-concentrations in an integro-pde model from evolutionary game theory. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 737-754. doi: 10.3934/dcdsb.2018205

[6]

Hassan Najafi Alishah, Pedro Duarte. Hamiltonian evolutionary games. Journal of Dynamics & Games, 2015, 2 (1) : 33-49. doi: 10.3934/jdg.2015.2.33

[7]

Andrzej Swierniak, Michal Krzeslak. Application of evolutionary games to modeling carcinogenesis. Mathematical Biosciences & Engineering, 2013, 10 (3) : 873-911. doi: 10.3934/mbe.2013.10.873

[8]

Christian Hofer, Georg Jäger, Manfred Füllsack. Critical transitions and Early Warning Signals in repeated Cooperation Games. Journal of Dynamics & Games, 2018, 5 (3) : 223-230. doi: 10.3934/jdg.2018014

[9]

Scott G. McCalla. Paladins as predators: Invasive waves in a spatial evolutionary adversarial game. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1437-1457. doi: 10.3934/dcdsb.2014.19.1437

[10]

William H. Sandholm. Local stability of strict equilibria under evolutionary game dynamics. Journal of Dynamics & Games, 2014, 1 (3) : 485-495. doi: 10.3934/jdg.2014.1.485

[11]

John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291

[12]

Yuanyuan Huang, Yiping Hao, Min Wang, Wen Zhou, Zhijun Wu. Optimality and stability of symmetric evolutionary games with applications in genetic selection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 503-523. doi: 10.3934/mbe.2015.12.503

[13]

Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero. Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation. Journal of Dynamics & Games, 2015, 2 (1) : 1-32. doi: 10.3934/jdg.2015.2.1

[14]

Jean-Baptiste Burie, Ramsès Djidjou-Demasse, Arnaud Ducrot. Slow convergence to equilibrium for an evolutionary epidemiology integro-differential system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019225

[15]

P.K. Newton. N-vortex equilibrium theory. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 411-418. doi: 10.3934/dcds.2007.19.411

[16]

Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems & Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713

[17]

Stamatios Katsikas, Vassilli Kolokoltsov. Evolutionary, mean-field and pressure-resistance game modelling of networks security. Journal of Dynamics & Games, 2019, 6 (4) : 315-335. doi: 10.3934/jdg.2019021

[18]

Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153

[19]

Yu Chen. Delegation principle for multi-agency games under ex post equilibrium. Journal of Dynamics & Games, 2018, 5 (4) : 311-329. doi: 10.3934/jdg.2018019

[20]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (1)

[Back to Top]