May  2016, 21(3): 803-813. doi: 10.3934/dcdsb.2016.21.803

Coexistence equilibria of evolutionary games on graphs under deterministic imitation dynamics

1. 

Center for Dynamics & Institute for Analysis, Dept. of Mathematics, Technische Universitat Dresden, 01062, Dresden, Germany, Germany

2. 

Dept. of Mathematics and NTIS, Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, 30614 Pilsen, Pilsen, Czech Republic, Czech Republic

Received  July 2015 Revised  November 2015 Published  January 2016

Cooperative behaviour is often accompanied by the incentives to defect, i.e., to reap the benefits of others' efforts without own contribution. We provide evidence that cooperation and defection can coexist under very broad conditions in the framework of evolutionary games on graphs under deterministic imitation dynamics. Namely, we show that for all graphs there exist coexistence equilibria for certain game-theoretical parameters. Similarly, for all relevant game-theoretical parameters there exists a graph yielding coexistence equilibria. Our proofs are constructive and robust with respect to various utility functions which can be considered. Finally, we briefly discuss bounds for the number of coexistence equilibria.
Citation: Jeremias Epperlein, Stefan Siegmund, Petr Stehlík, Vladimír  Švígler. Coexistence equilibria of evolutionary games on graphs under deterministic imitation dynamics. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 803-813. doi: 10.3934/dcdsb.2016.21.803
References:
[1]

R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys., 74 (2002), 47-97. doi: 10.1103/RevModPhys.74.47.

[2]

M. Broom and J. Rychtář, An analysis of the fixation probability of a mutant on special classes of non-directed graphs, Proc. Royal. Soc., Ser. A, 464 (2008), 2609-2627. doi: 10.1098/rspa.2008.0058.

[3]

M. Broom, C. Hadjichrysanthou, J. Rychtář and B. T. Stadler, Two results on evolutionary processes on general non-directed graphs, Proc. Royal. Soc., Ser. A, 466 (2010), 2795-2798. doi: 10.1098/rspa.2010.0067.

[4]

T. Clutton-Brock, Cooperation between non-kin in animal societies, Nature, 462 (2009), 51-57. doi: 10.1038/nature08366.

[5]

J. Epperlein, S. Siegmund and P. Stehlík, Evolutionary games on graphs and discrete dynamical systems, J. Difference Eq. Appl., 21 (2015), 72-95. doi: 10.1080/10236198.2014.988618.

[6]

W. D. Hamilton, The genetical evolution of social behaviour, J. Theor. Biol., 7 (1964), 1-16. doi: 10.1016/0022-5193(64)90038-4.

[7]

C. Hauert and M. Doebeli, Spatial structure often inhibits the evolution of cooperation in the snowdrift game, Nature, 428 (2004), 643-646. doi: 10.1038/nature02360.

[8]

J. Hofbauer and K. Sigmund, Evolutionary game dynamics, Bull. Amer. Math. Soc., 40 (2003), 479-519. doi: 10.1090/S0273-0979-03-00988-1.

[9]

J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems, Cambridge University Press, 1988.

[10]

J. Libich and P. Stehlík, Monetary policy facing fiscal indiscipline under generalized timing of actions, Journal of Institutional and Theoretical Economics, 168 (2012), 393-431. doi: 10.1628/093245612802920962.

[11]

J. Maynard Smith, The theory of games and the evolution of animal conflicts, Journal of Theoretical Biology, 47 (1974), 209-221. doi: 10.1016/0022-5193(74)90110-6.

[12]

M. A. Nowak, Five rules for the evolution of cooperation, Science, 314 (2006), 1560-1563. doi: 10.1126/science.1133755.

[13]

M. A. Nowak and R. M. May, Evolutionary games and spatial chaos, Nature, 359 (1992), 826-829. doi: 10.1038/359826a0.

[14]

H. Ohtsuki and M. A. Nowak, Evolutionary games on cycles, Proc. R. Soc. B, 273 (2006), 2249-2256. doi: 10.1098/rspb.2006.3576.

[15]

H. Ohtsuki and M. A. Nowak, Evolutionary stability on graphs, Journal of Theoretical Biology, 251 (2008), 698-707. doi: 10.1016/j.jtbi.2008.01.005.

[16]

G. Szabó and G. Fáth, Evolutionary games on graphs, Phys. Rep., 446 (2007), 97-216. doi: 10.1016/j.physrep.2007.04.004.

show all references

References:
[1]

R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys., 74 (2002), 47-97. doi: 10.1103/RevModPhys.74.47.

[2]

M. Broom and J. Rychtář, An analysis of the fixation probability of a mutant on special classes of non-directed graphs, Proc. Royal. Soc., Ser. A, 464 (2008), 2609-2627. doi: 10.1098/rspa.2008.0058.

[3]

M. Broom, C. Hadjichrysanthou, J. Rychtář and B. T. Stadler, Two results on evolutionary processes on general non-directed graphs, Proc. Royal. Soc., Ser. A, 466 (2010), 2795-2798. doi: 10.1098/rspa.2010.0067.

[4]

T. Clutton-Brock, Cooperation between non-kin in animal societies, Nature, 462 (2009), 51-57. doi: 10.1038/nature08366.

[5]

J. Epperlein, S. Siegmund and P. Stehlík, Evolutionary games on graphs and discrete dynamical systems, J. Difference Eq. Appl., 21 (2015), 72-95. doi: 10.1080/10236198.2014.988618.

[6]

W. D. Hamilton, The genetical evolution of social behaviour, J. Theor. Biol., 7 (1964), 1-16. doi: 10.1016/0022-5193(64)90038-4.

[7]

C. Hauert and M. Doebeli, Spatial structure often inhibits the evolution of cooperation in the snowdrift game, Nature, 428 (2004), 643-646. doi: 10.1038/nature02360.

[8]

J. Hofbauer and K. Sigmund, Evolutionary game dynamics, Bull. Amer. Math. Soc., 40 (2003), 479-519. doi: 10.1090/S0273-0979-03-00988-1.

[9]

J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems, Cambridge University Press, 1988.

[10]

J. Libich and P. Stehlík, Monetary policy facing fiscal indiscipline under generalized timing of actions, Journal of Institutional and Theoretical Economics, 168 (2012), 393-431. doi: 10.1628/093245612802920962.

[11]

J. Maynard Smith, The theory of games and the evolution of animal conflicts, Journal of Theoretical Biology, 47 (1974), 209-221. doi: 10.1016/0022-5193(74)90110-6.

[12]

M. A. Nowak, Five rules for the evolution of cooperation, Science, 314 (2006), 1560-1563. doi: 10.1126/science.1133755.

[13]

M. A. Nowak and R. M. May, Evolutionary games and spatial chaos, Nature, 359 (1992), 826-829. doi: 10.1038/359826a0.

[14]

H. Ohtsuki and M. A. Nowak, Evolutionary games on cycles, Proc. R. Soc. B, 273 (2006), 2249-2256. doi: 10.1098/rspb.2006.3576.

[15]

H. Ohtsuki and M. A. Nowak, Evolutionary stability on graphs, Journal of Theoretical Biology, 251 (2008), 698-707. doi: 10.1016/j.jtbi.2008.01.005.

[16]

G. Szabó and G. Fáth, Evolutionary games on graphs, Phys. Rep., 446 (2007), 97-216. doi: 10.1016/j.physrep.2007.04.004.

[1]

Jeremias Epperlein, Vladimír Švígler. On arbitrarily long periodic orbits of evolutionary games on graphs. Discrete and Continuous Dynamical Systems - B, 2018, 23 (5) : 1895-1915. doi: 10.3934/dcdsb.2018187

[2]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic and Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[3]

Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure and Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981

[4]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics and Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[5]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic and Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[6]

Yadong Shu, Ying Dai, Zujun Ma. Evolutionary game theory analysis of supply chain with fairness concerns of retailers. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022098

[7]

King-Yeung Lam. Dirac-concentrations in an integro-pde model from evolutionary game theory. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 737-754. doi: 10.3934/dcdsb.2018205

[8]

Hassan Najafi Alishah, Pedro Duarte. Hamiltonian evolutionary games. Journal of Dynamics and Games, 2015, 2 (1) : 33-49. doi: 10.3934/jdg.2015.2.33

[9]

Andrzej Swierniak, Michal Krzeslak. Application of evolutionary games to modeling carcinogenesis. Mathematical Biosciences & Engineering, 2013, 10 (3) : 873-911. doi: 10.3934/mbe.2013.10.873

[10]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial and Management Optimization, 2022, 18 (1) : 593-611. doi: 10.3934/jimo.2020170

[11]

Segismundo S. Izquierdo, Luis R. Izquierdo. "Test two, choose the better" leads to high cooperation in the Centipede game. Journal of Dynamics and Games, 2021  doi: 10.3934/jdg.2021018

[12]

Christian Hofer, Georg Jäger, Manfred Füllsack. Critical transitions and Early Warning Signals in repeated Cooperation Games. Journal of Dynamics and Games, 2018, 5 (3) : 223-230. doi: 10.3934/jdg.2018014

[13]

Scott G. McCalla. Paladins as predators: Invasive waves in a spatial evolutionary adversarial game. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1437-1457. doi: 10.3934/dcdsb.2014.19.1437

[14]

William H. Sandholm. Local stability of strict equilibria under evolutionary game dynamics. Journal of Dynamics and Games, 2014, 1 (3) : 485-495. doi: 10.3934/jdg.2014.1.485

[15]

John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291

[16]

Yuanyuan Huang, Yiping Hao, Min Wang, Wen Zhou, Zhijun Wu. Optimality and stability of symmetric evolutionary games with applications in genetic selection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 503-523. doi: 10.3934/mbe.2015.12.503

[17]

Aradhana Narang, A. J. Shaiju. Neighborhood strong superiority and evolutionary stability of polymorphic profiles in asymmetric games. Journal of Dynamics and Games, 2022  doi: 10.3934/jdg.2022012

[18]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics and Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[19]

P.K. Newton. N-vortex equilibrium theory. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 411-418. doi: 10.3934/dcds.2007.19.411

[20]

Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems and Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (224)
  • HTML views (0)
  • Cited by (5)

[Back to Top]