May  2016, 21(3): 837-847. doi: 10.3934/dcdsb.2016.21.837

A revisit to the diffusive logistic model with free boundary condition

1. 

School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China

2. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C 5S7

Received  February 2015 Revised  July 2015 Published  January 2016

This short paper revisits a free boundary problem which is used to describe the spreading of a new or invasive species. Our main goal is to understand how the underlying long-time dynamical behaviors response to the initial data. To this end, we parameterize the initial function as $u_0=\sigma\phi^*$, where $\sigma$ is regarded as a variable parameter and $\phi^*$ is a given function. Our main result suggests that when the diffusion rate is small, the species can persist in the long run (called spreading) for any $\sigma>0$; while if the diffusion rate is large, the species will go to extinction finally (called vanishing) for small $\sigma>0$. Maybe of more interest is that for some intermediate diffusion rates, there appears a sharp threshold value $\sigma^*\in(0, \infty)$ such that vanishing happens provided $0<\sigma\leq\sigma^*$ and spreading happens provided $\sigma>\sigma^*$. This result can be seen as an improvement of Theorem 1.2 in [8].
Citation: Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837
References:
[1]

G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model,, Netw. Heterog. Media., 7 (2012), 583.  doi: 10.3934/nhm.2012.7.583.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in a disrupted environments,, Proc. Roy. Soc. Edinburgh., 112 (1989), 293.  doi: 10.1017/S030821050001876X.  Google Scholar

[3]

R. S. Cantrell, C. Cosner and V. Hutson, Ecological models, permanence and spatial heterogeneity,, Rocky Mount. J. Math., 26 (1996), 1.  doi: 10.1216/rmjm/1181072101.  Google Scholar

[4]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778.  doi: 10.1137/S0036141099351693.  Google Scholar

[5]

S. B. Cui, Well-posedness of a multidimensional free boundary problem modelling the growth of nonnecrotic tumors,, J. Funct. Anal., 245 (2007), 1.  doi: 10.1016/j.jfa.2006.12.020.  Google Scholar

[6]

Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II,, Journal of Differential Equations, 250 (2011), 4336.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[7]

Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377.  doi: 10.1137/090771089.  Google Scholar

[8]

Y. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries,, J. Eur. Math. Soc., 17 (2015), 2673.  doi: 10.4171/JEMS/568.  Google Scholar

[9]

Y. Du, H. Matsuzawa and M. L. Zhou, Sharp estimate of the spreading speed determined by nonlinear free boundary problems,, SIAM J. Math. Anal., 46 (2014), 375.  doi: 10.1137/130908063.  Google Scholar

[10]

Y. Du, H. Matsuzawa and M. L. Zhou, Spreading speed and profile for nonlinear Stefan problems in high space dimensions,, J. Math. Pures Appl., 103 (2015), 741.  doi: 10.1137/130908063.  Google Scholar

[11]

M. Fila and P. Souplet, Existence of global solutions with slow decay and unbounded free boundary for a superlinear Stefan problem,, Interfaces Free Bound, 3 (2001), 337.   Google Scholar

[12]

H. Ghidouche, P. Souplet and D. Tarzia, Decay of global solutions, stability and blow-up for a reaction-diffusion problem with free boundary,, Proc. Am. Math. Soc., 129 (2001), 781.  doi: 10.1090/S0002-9939-00-05705-1.  Google Scholar

[13]

K. I. Kim, Z. G. Lin and Q. Y. Zhang, An SIR epidemic model with free boundary,, Nonlinear Analysis: Real World Applications., 14 (2013), 1992.  doi: 10.1016/j.nonrwa.2013.02.003.  Google Scholar

[14]

C. X. Lei, K. Kim and Z. G. Lin, The spreading frontiers of avian-human influenza described by the free boundary,, Sci. China Math., 57 (2014), 971.  doi: 10.1007/s11425-013-4652-7.  Google Scholar

[15]

C. X. Lei, Z. G. Lin and Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat,, J. Differential Equations., 257 (2014), 145.  doi: 10.1016/j.jde.2014.03.015.  Google Scholar

[16]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883.  doi: 10.1088/0951-7715/20/8/004.  Google Scholar

[17]

Z. G. Lin, Y. N. Zhao and P. Zhou, The infected frontier in an SEIR epidemic model with infinite delay,, Discrete. Contin. Dyn. Syst. Ser. B, 18 (2013), 2355.  doi: 10.3934/dcdsb.2013.18.2355.  Google Scholar

[18]

L. I. Rubinstein, The Stefan Problem,, American Mathematical Society, (1971).   Google Scholar

[19]

F. E. Smith, Population dynamics in Daphnia magna and a new model for population growth,, Ecology, 44 (1963), 651.  doi: 10.2307/1933011.  Google Scholar

[20]

P. Zhou, J. Bao and Z. G. Lin, Global existence and blowup of a localized problem with free boundary,, Nonlinear Anal., 74 (2011), 2523.  doi: 10.1016/j.na.2010.11.047.  Google Scholar

[21]

P. Zhou and Z. G. Lin, Global existence and blowup of a nonlocal problem in space with free boundary,, J. Funct. Anal., 262 (2012), 3409.  doi: 10.1016/j.jfa.2012.01.018.  Google Scholar

[22]

P. Zhou and Z. G. Lin, Global fast and slow solutions of a localized problem with free boundary,, Sci. China Math., 55 (2012), 1937.  doi: 10.1007/s11425-012-4443-6.  Google Scholar

[23]

P. Zhou and D. M. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment,, J. Differential Equations., 256 (2014), 1927.  doi: 10.1016/j.jde.2013.12.008.  Google Scholar

show all references

References:
[1]

G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model,, Netw. Heterog. Media., 7 (2012), 583.  doi: 10.3934/nhm.2012.7.583.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in a disrupted environments,, Proc. Roy. Soc. Edinburgh., 112 (1989), 293.  doi: 10.1017/S030821050001876X.  Google Scholar

[3]

R. S. Cantrell, C. Cosner and V. Hutson, Ecological models, permanence and spatial heterogeneity,, Rocky Mount. J. Math., 26 (1996), 1.  doi: 10.1216/rmjm/1181072101.  Google Scholar

[4]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778.  doi: 10.1137/S0036141099351693.  Google Scholar

[5]

S. B. Cui, Well-posedness of a multidimensional free boundary problem modelling the growth of nonnecrotic tumors,, J. Funct. Anal., 245 (2007), 1.  doi: 10.1016/j.jfa.2006.12.020.  Google Scholar

[6]

Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II,, Journal of Differential Equations, 250 (2011), 4336.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[7]

Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377.  doi: 10.1137/090771089.  Google Scholar

[8]

Y. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries,, J. Eur. Math. Soc., 17 (2015), 2673.  doi: 10.4171/JEMS/568.  Google Scholar

[9]

Y. Du, H. Matsuzawa and M. L. Zhou, Sharp estimate of the spreading speed determined by nonlinear free boundary problems,, SIAM J. Math. Anal., 46 (2014), 375.  doi: 10.1137/130908063.  Google Scholar

[10]

Y. Du, H. Matsuzawa and M. L. Zhou, Spreading speed and profile for nonlinear Stefan problems in high space dimensions,, J. Math. Pures Appl., 103 (2015), 741.  doi: 10.1137/130908063.  Google Scholar

[11]

M. Fila and P. Souplet, Existence of global solutions with slow decay and unbounded free boundary for a superlinear Stefan problem,, Interfaces Free Bound, 3 (2001), 337.   Google Scholar

[12]

H. Ghidouche, P. Souplet and D. Tarzia, Decay of global solutions, stability and blow-up for a reaction-diffusion problem with free boundary,, Proc. Am. Math. Soc., 129 (2001), 781.  doi: 10.1090/S0002-9939-00-05705-1.  Google Scholar

[13]

K. I. Kim, Z. G. Lin and Q. Y. Zhang, An SIR epidemic model with free boundary,, Nonlinear Analysis: Real World Applications., 14 (2013), 1992.  doi: 10.1016/j.nonrwa.2013.02.003.  Google Scholar

[14]

C. X. Lei, K. Kim and Z. G. Lin, The spreading frontiers of avian-human influenza described by the free boundary,, Sci. China Math., 57 (2014), 971.  doi: 10.1007/s11425-013-4652-7.  Google Scholar

[15]

C. X. Lei, Z. G. Lin and Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat,, J. Differential Equations., 257 (2014), 145.  doi: 10.1016/j.jde.2014.03.015.  Google Scholar

[16]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883.  doi: 10.1088/0951-7715/20/8/004.  Google Scholar

[17]

Z. G. Lin, Y. N. Zhao and P. Zhou, The infected frontier in an SEIR epidemic model with infinite delay,, Discrete. Contin. Dyn. Syst. Ser. B, 18 (2013), 2355.  doi: 10.3934/dcdsb.2013.18.2355.  Google Scholar

[18]

L. I. Rubinstein, The Stefan Problem,, American Mathematical Society, (1971).   Google Scholar

[19]

F. E. Smith, Population dynamics in Daphnia magna and a new model for population growth,, Ecology, 44 (1963), 651.  doi: 10.2307/1933011.  Google Scholar

[20]

P. Zhou, J. Bao and Z. G. Lin, Global existence and blowup of a localized problem with free boundary,, Nonlinear Anal., 74 (2011), 2523.  doi: 10.1016/j.na.2010.11.047.  Google Scholar

[21]

P. Zhou and Z. G. Lin, Global existence and blowup of a nonlocal problem in space with free boundary,, J. Funct. Anal., 262 (2012), 3409.  doi: 10.1016/j.jfa.2012.01.018.  Google Scholar

[22]

P. Zhou and Z. G. Lin, Global fast and slow solutions of a localized problem with free boundary,, Sci. China Math., 55 (2012), 1937.  doi: 10.1007/s11425-012-4443-6.  Google Scholar

[23]

P. Zhou and D. M. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment,, J. Differential Equations., 256 (2014), 1927.  doi: 10.1016/j.jde.2013.12.008.  Google Scholar

[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[3]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[6]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[7]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[8]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[9]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[10]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[13]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[14]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[15]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[16]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[17]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[18]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]