-
Previous Article
Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions
- DCDS-B Home
- This Issue
-
Next Article
Uniqueness of nonzero positive solutions of Laplacian elliptic equations arising in combustion theory
Backward bifurcation of an HTLV-I model with immune response
1. | School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China |
2. | School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049 |
References:
[1] |
B. Asquith and C. R. M. Bangham, How does HTLV-I persist despite a strong cell-mediated immune response?,, Trends in Immunology, 29 (2008), 4.
doi: 10.1016/j.it.2007.09.006. |
[2] |
C. R. M. Bangham, HTLV-I infections,, Journal of Clinical Pathology, 53 (2000), 581. Google Scholar |
[3] |
R. C. Gallo, The discovery of the first human retrovirus: HTLV-1 and HTLV-2,, Rrtrovirology, 2 (2005), 17. Google Scholar |
[4] |
U. Tomaru, Y. Yamano and S. Jacobson, HTLV-I Infection and the Nervous System In Clinical Neuroimmunology,, $2^{nd}$ edition, (2005). Google Scholar |
[5] |
L. B. Cook, M. Elemans, A. G. Rowan and B. Asquith, HTLV-I: Persistence and pathogenesis,, Virology, 435 (2013), 131.
doi: 10.1016/j.virol.2012.09.028. |
[6] |
F. A. Proietti, A. B. F.Carneiro-Proietti, B. C. Catalan-Soares and E. L. MURPHY, Global epidemiology of HTLV-I infection and associated deseases,, Oncogene, 24 (2005), 6058. Google Scholar |
[7] |
D. Wodarz and C. R. M. Bangham, Evolutionary dynamics of HTLV-I,, Journal of Molecular Evolution, 50 (2000), 448. Google Scholar |
[8] |
J. E. Kaplan, M. Osame, H. Kubota, A. Igata, H. Nishitani, Y. Maeda, R. F. Khabbaz and R. S. Janssen, The risk of development of HTLV-I-associted myelopathy/tropocal spastic paraparesis among persons infected with HTLV-I,, Journal of Acquired Immune Deficiency Syndromes, 3 (1990), 1096. Google Scholar |
[9] |
C. Pique and K. S. Jones, Pathways of cell-cell transmission of HTLV-I,, Frontiers in Microbiology, 3 (2012).
doi: 10.3389/fmicb.2012.00378. |
[10] |
M. Nagai, K. Usuku, W. Matsumoto, D. Kodama, N. Takenouchi, T. Moritoyo, S. Hashiguchi, M. Ichinose, R. M. Bangham, S. Izumo and M. Osame, Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-i carriers: high proviral load strongly predisposes to HAM/TSP,, Journal of NeuroVirology, 4 (1998), 586. Google Scholar |
[11] |
Y. Ina and T. Gogobori, Molecular evoluton of human T-cell leukemia virus,, Journal of Molecular Evolution, 31 (1990), 493. Google Scholar |
[12] |
R. Kubota, T. Fujiyoshi, S. Izumo, S. Yashiki, I. Maruyama, M. Osame and S. Sonoda, Fluctuation of HTLV-I proviral DNA in peripheral blood mononuclear cells of HTLV-I-associated myelopathy,, Journal of NeuroVirology, 42 (1993), 147.
doi: 10.1016/0165-5728(93)90004-I. |
[13] |
H. GÓmez-Acevedo and M. Y. Li, Backward bifurcation in a model for HTLV-I infection of $CD4^+$ T cells,, Bulletin of Mathematical Biology, 67 (2005), 101.
doi: 10.1016/j.bulm.2004.06.004. |
[14] |
F. Mortreux, A. S. Gabet and E. Wattel, Molecular and cellular aspects of HTLV-I associated leukemogenesis in vivo,, Leukemia, 17 (2003), 26.
doi: 10.1038/sj.leu.2402777. |
[15] |
P. Hollsberg, Mechanisms of T-cell activation by human T-cell lymphotropic virus type 1,, Microbiology and Molecular Biology Reviews, 63 (1999), 308. Google Scholar |
[16] |
J. Mesnard and C. Devaux, Multiple control levels of cell proliferation by human T-cell leukemia virus type 1 Tax protein,, Virology, 257 (1999), 277.
doi: 10.1006/viro.1999.9685. |
[17] |
F. Bex and R. Gaynor, Regulation of gene expression by HTLV-I Tax protein,, Methods, 16 (1998), 83.
doi: 10.1006/meth.1998.0646. |
[18] |
M. Yoshida, Multiple viral strategies of HTLV-I for dysregulation of cell growth control,, Annual Review of Immunology, 19 (2001), 475. Google Scholar |
[19] |
B. Asquith, A. J. Mosley, A. Heaps, Y. Tanaka, G. P. Taylor, A. R. Mclean and C. R. M Bangham, Quantification of the virus-host interaction in human T lymphotropic virus 1 infection,, Retrovirology, 75 (2005), 1. Google Scholar |
[20] |
M. A. Nowak and C. R. M. Bangham, Population dynamics of immune response to persistent viruses,, Science, 272 (1996), 74.
doi: 10.1126/science.272.5258.74. |
[21] |
D. Wodarz, M. A. Nowak and C. R. M. Bangham, The dynamics of HTLV-I and the CTL response,, Immunology Today, 20 (1999), 220.
doi: 10.1016/S0167-5699(99)01446-2. |
[22] |
M. Y. Li and A. G. Lim, Modelling the role of tax expression in HTLV-I persistence in vivo,, Bulletin of Mathematical Biology, 73 (2011), 3008.
doi: 10.1007/s11538-011-9657-1. |
[23] |
S. Li and Y. Zhou, Global dynamics of an HTLV-I model with cell-to-cell infection and mitosis,, Abstract and Applied Analysis, 2014 (2014).
doi: 10.1155/2014/132781. |
[24] |
H. Gomez-Acevedo, M. Y. Li and S. Jacobson, Multistability in a model for CTL Response to HTLV-I infection and its implications to HAM/TSP decelopment and prevention,, Bulletin of Mathematical Biology, 72 (2010), 681.
doi: 10.1007/s11538-009-9465-z. |
[25] |
M. Y. Li and H. Shu, Global dynamics of a mathematical model for HTLV-I infection of $CD4^+$ T cells with delayed CTL response,, Nonlinear Analysis: Real World Applications, 13 (2012), 1080.
doi: 10.1016/j.nonrwa.2011.02.026. |
[26] |
M. Y. Li and H. Shu, Multiple stable peridic oscillations in a mathematical model of CTL response to HTLVE-I infection,, Bulletin of Mathematical Biology, 73 (2011), 1774.
doi: 10.1007/s11538-010-9591-7. |
[27] |
J. Lang and M. Y. Li, Stable and transient periodic oscillations in a mathematical model for CTL response to HTLV-I infection,, Mathematical Biology, 65 (2012), 181.
doi: 10.1007/s00285-011-0455-z. |
[28] |
A. G. Lim and P. K. Maini, HTLV-I infection: A dynamica struggle between viral persistence and host immunity,, Journal of Theoretical Biology, 352 (2014), 92.
doi: 10.1016/j.jtbi.2014.02.022. |
[29] |
B. Asquith, Y. Zhang, A. J. Mosley, C. M. d.Lara, D. L. Wallace, A. Worth, L. Kaftantzi, K. Meekings, G. E. Griffin, Y. Tanaka, D. F. Tough, P. C. Beverley, G. P. Taylor, D. C. Macallan and C. R. Bangham, In vivo T lymphocyte dynamics in humans and the impact of human T-lymphotropic virus 1 infection,, Proceedings of the National Academy of Sciences, 104 (2007), 8035.
doi: 10.1073/pnas.0608832104. |
[30] |
X. Yang and L. Chen, Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models,, Computers and Mathematics with Applications, 32 (1996), 109.
doi: 10.1016/0898-1221(96)00129-0. |
[31] |
P. v. d. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical. Biosciences, 180 (2002), 29.
doi: 10.1016/S0025-5564(02)00108-6. |
[32] |
J. P. LaSalle, The stability of Dynamical systems,, Regional Conference Series in Applied Mathematics, (1976).
|
[33] |
A. Melamed, D. J. Laydon, N. A. Gillet, Y. Tanaka, G. P. Taylor and C. R. Bangham, Genome-wide determinants of proviral targeting, clonal abundance and expression in natural HTLV-I infection,, PLoS pathogens, 9 (2013).
doi: 10.1371/journal.ppat.1003271. |
show all references
References:
[1] |
B. Asquith and C. R. M. Bangham, How does HTLV-I persist despite a strong cell-mediated immune response?,, Trends in Immunology, 29 (2008), 4.
doi: 10.1016/j.it.2007.09.006. |
[2] |
C. R. M. Bangham, HTLV-I infections,, Journal of Clinical Pathology, 53 (2000), 581. Google Scholar |
[3] |
R. C. Gallo, The discovery of the first human retrovirus: HTLV-1 and HTLV-2,, Rrtrovirology, 2 (2005), 17. Google Scholar |
[4] |
U. Tomaru, Y. Yamano and S. Jacobson, HTLV-I Infection and the Nervous System In Clinical Neuroimmunology,, $2^{nd}$ edition, (2005). Google Scholar |
[5] |
L. B. Cook, M. Elemans, A. G. Rowan and B. Asquith, HTLV-I: Persistence and pathogenesis,, Virology, 435 (2013), 131.
doi: 10.1016/j.virol.2012.09.028. |
[6] |
F. A. Proietti, A. B. F.Carneiro-Proietti, B. C. Catalan-Soares and E. L. MURPHY, Global epidemiology of HTLV-I infection and associated deseases,, Oncogene, 24 (2005), 6058. Google Scholar |
[7] |
D. Wodarz and C. R. M. Bangham, Evolutionary dynamics of HTLV-I,, Journal of Molecular Evolution, 50 (2000), 448. Google Scholar |
[8] |
J. E. Kaplan, M. Osame, H. Kubota, A. Igata, H. Nishitani, Y. Maeda, R. F. Khabbaz and R. S. Janssen, The risk of development of HTLV-I-associted myelopathy/tropocal spastic paraparesis among persons infected with HTLV-I,, Journal of Acquired Immune Deficiency Syndromes, 3 (1990), 1096. Google Scholar |
[9] |
C. Pique and K. S. Jones, Pathways of cell-cell transmission of HTLV-I,, Frontiers in Microbiology, 3 (2012).
doi: 10.3389/fmicb.2012.00378. |
[10] |
M. Nagai, K. Usuku, W. Matsumoto, D. Kodama, N. Takenouchi, T. Moritoyo, S. Hashiguchi, M. Ichinose, R. M. Bangham, S. Izumo and M. Osame, Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-i carriers: high proviral load strongly predisposes to HAM/TSP,, Journal of NeuroVirology, 4 (1998), 586. Google Scholar |
[11] |
Y. Ina and T. Gogobori, Molecular evoluton of human T-cell leukemia virus,, Journal of Molecular Evolution, 31 (1990), 493. Google Scholar |
[12] |
R. Kubota, T. Fujiyoshi, S. Izumo, S. Yashiki, I. Maruyama, M. Osame and S. Sonoda, Fluctuation of HTLV-I proviral DNA in peripheral blood mononuclear cells of HTLV-I-associated myelopathy,, Journal of NeuroVirology, 42 (1993), 147.
doi: 10.1016/0165-5728(93)90004-I. |
[13] |
H. GÓmez-Acevedo and M. Y. Li, Backward bifurcation in a model for HTLV-I infection of $CD4^+$ T cells,, Bulletin of Mathematical Biology, 67 (2005), 101.
doi: 10.1016/j.bulm.2004.06.004. |
[14] |
F. Mortreux, A. S. Gabet and E. Wattel, Molecular and cellular aspects of HTLV-I associated leukemogenesis in vivo,, Leukemia, 17 (2003), 26.
doi: 10.1038/sj.leu.2402777. |
[15] |
P. Hollsberg, Mechanisms of T-cell activation by human T-cell lymphotropic virus type 1,, Microbiology and Molecular Biology Reviews, 63 (1999), 308. Google Scholar |
[16] |
J. Mesnard and C. Devaux, Multiple control levels of cell proliferation by human T-cell leukemia virus type 1 Tax protein,, Virology, 257 (1999), 277.
doi: 10.1006/viro.1999.9685. |
[17] |
F. Bex and R. Gaynor, Regulation of gene expression by HTLV-I Tax protein,, Methods, 16 (1998), 83.
doi: 10.1006/meth.1998.0646. |
[18] |
M. Yoshida, Multiple viral strategies of HTLV-I for dysregulation of cell growth control,, Annual Review of Immunology, 19 (2001), 475. Google Scholar |
[19] |
B. Asquith, A. J. Mosley, A. Heaps, Y. Tanaka, G. P. Taylor, A. R. Mclean and C. R. M Bangham, Quantification of the virus-host interaction in human T lymphotropic virus 1 infection,, Retrovirology, 75 (2005), 1. Google Scholar |
[20] |
M. A. Nowak and C. R. M. Bangham, Population dynamics of immune response to persistent viruses,, Science, 272 (1996), 74.
doi: 10.1126/science.272.5258.74. |
[21] |
D. Wodarz, M. A. Nowak and C. R. M. Bangham, The dynamics of HTLV-I and the CTL response,, Immunology Today, 20 (1999), 220.
doi: 10.1016/S0167-5699(99)01446-2. |
[22] |
M. Y. Li and A. G. Lim, Modelling the role of tax expression in HTLV-I persistence in vivo,, Bulletin of Mathematical Biology, 73 (2011), 3008.
doi: 10.1007/s11538-011-9657-1. |
[23] |
S. Li and Y. Zhou, Global dynamics of an HTLV-I model with cell-to-cell infection and mitosis,, Abstract and Applied Analysis, 2014 (2014).
doi: 10.1155/2014/132781. |
[24] |
H. Gomez-Acevedo, M. Y. Li and S. Jacobson, Multistability in a model for CTL Response to HTLV-I infection and its implications to HAM/TSP decelopment and prevention,, Bulletin of Mathematical Biology, 72 (2010), 681.
doi: 10.1007/s11538-009-9465-z. |
[25] |
M. Y. Li and H. Shu, Global dynamics of a mathematical model for HTLV-I infection of $CD4^+$ T cells with delayed CTL response,, Nonlinear Analysis: Real World Applications, 13 (2012), 1080.
doi: 10.1016/j.nonrwa.2011.02.026. |
[26] |
M. Y. Li and H. Shu, Multiple stable peridic oscillations in a mathematical model of CTL response to HTLVE-I infection,, Bulletin of Mathematical Biology, 73 (2011), 1774.
doi: 10.1007/s11538-010-9591-7. |
[27] |
J. Lang and M. Y. Li, Stable and transient periodic oscillations in a mathematical model for CTL response to HTLV-I infection,, Mathematical Biology, 65 (2012), 181.
doi: 10.1007/s00285-011-0455-z. |
[28] |
A. G. Lim and P. K. Maini, HTLV-I infection: A dynamica struggle between viral persistence and host immunity,, Journal of Theoretical Biology, 352 (2014), 92.
doi: 10.1016/j.jtbi.2014.02.022. |
[29] |
B. Asquith, Y. Zhang, A. J. Mosley, C. M. d.Lara, D. L. Wallace, A. Worth, L. Kaftantzi, K. Meekings, G. E. Griffin, Y. Tanaka, D. F. Tough, P. C. Beverley, G. P. Taylor, D. C. Macallan and C. R. Bangham, In vivo T lymphocyte dynamics in humans and the impact of human T-lymphotropic virus 1 infection,, Proceedings of the National Academy of Sciences, 104 (2007), 8035.
doi: 10.1073/pnas.0608832104. |
[30] |
X. Yang and L. Chen, Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models,, Computers and Mathematics with Applications, 32 (1996), 109.
doi: 10.1016/0898-1221(96)00129-0. |
[31] |
P. v. d. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical. Biosciences, 180 (2002), 29.
doi: 10.1016/S0025-5564(02)00108-6. |
[32] |
J. P. LaSalle, The stability of Dynamical systems,, Regional Conference Series in Applied Mathematics, (1976).
|
[33] |
A. Melamed, D. J. Laydon, N. A. Gillet, Y. Tanaka, G. P. Taylor and C. R. Bangham, Genome-wide determinants of proviral targeting, clonal abundance and expression in natural HTLV-I infection,, PLoS pathogens, 9 (2013).
doi: 10.1371/journal.ppat.1003271. |
[1] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[2] |
Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231 |
[3] |
Hongyu Cheng, Shimin Wang. Response solutions to harmonic oscillators beyond multi–dimensional brjuno frequency. Communications on Pure & Applied Analysis, 2021, 20 (2) : 467-494. doi: 10.3934/cpaa.2020222 |
[4] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[5] |
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215 |
[6] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[7] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[8] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[9] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[10] |
Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157 |
[11] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[12] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021010 |
[13] |
Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021006 |
[14] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[15] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[16] |
Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282 |
[17] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[18] |
Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072 |
[19] |
He Zhang, John Harlim, Xiantao Li. Estimating linear response statistics using orthogonal polynomials: An RKHS formulation. Foundations of Data Science, 2020, 2 (4) : 443-485. doi: 10.3934/fods.2020021 |
[20] |
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020341 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]