May  2016, 21(3): 943-957. doi: 10.3934/dcdsb.2016.21.943

The dynamical mechanism of jets for AGN

1. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

Received  June 2015 Revised  September 2015 Published  January 2016

The black hole core of a galaxy attracts a large amounts of gases around it, forming an active galactic nucleus (AGN). An AGN emits huge quantities of energy, leading to AGN jets. In 16, Ma and Wang established a model governing the AGN, in which they obtain the driving force of AGN jets. In this paper, we generalize their model to couple magnetic fields describing the AGN plasma, and derive the huge explosive electromagnetic energy as proposed in (1.13) of 16.
Citation: Quan Wang, Huichao Wang. The dynamical mechanism of jets for AGN. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 943-957. doi: 10.3934/dcdsb.2016.21.943
References:
[1]

R. D. Blandford and R. L. Znajek, Electromagnetic extraction of energy from Kerr black holes,, M.N.R.A.S., (). Google Scholar

[2]

R. D. Blandford and D. G. Payne, Hydromagnetic flows from accretion discs and the production of radio jets,, M.N.R.A.S., (). Google Scholar

[3]

M. Camenzind, Centrifugally driven MHD-winds in active galactic nuclei,, Astronomy and Astrophysics, (). Google Scholar

[4]

M. Camenzind, Hydromagnetic flows from rapidly rotating compact objects. I - Cold relativistic flows from rapid rotators,, Astronomy and Astrophysics, (). Google Scholar

[5]

H. D. Curtis, A study of occulting matrter in spiral nebulae,, Pub. Lick. Obs., 13 (1918), 43. Google Scholar

[6]

C. Hazard, M. B. Mackay and A. J. Shimmins, Investigation of the Radio Source 3C273 by the method of Lunar Occultations,, Nature, 197 (1963), 1037. Google Scholar

[7]

S. L. O'Dell, Radiation force on a relaticistic plasma and the eddington limit,, ApJ, (). Google Scholar

[8]

N. A. Pereyra, T. R. Kallman and J. M. Blondin, Hydrodynamical Models of Line-driven Accretion Disk Winds,, ApJ, (). Google Scholar

[9]

D. Proga, J. M. Stone and J.E.Drew, Radiation-driven winds from luminous accretion discs},, M.N.R.A.S., (). Google Scholar

[10]

D. Proga, J. M. Stone and J. E. Drew, Line-driven disc wind models with an improved line force,, M.N.R.A.S., (). Google Scholar

[11]

T. Ma and S. H. Wang, Dynamic bifurcation and stability in the Rayleigh-Benard convection,, Comm. Math, 2 (2004), 158. doi: 10.4310/CMS.2004.v2.n2.a2. Google Scholar

[12]

T. Ma and S. H. Wang, Phase Transition Dynamics,, Springer-Verklag, (2014). doi: 10.1007/978-1-4614-8963-4. Google Scholar

[13]

T. Ma and S. H. Wang, Unified field equations coupling four forces and principle of interaction dynamics,, Discrete and Continuous Dynamical Systems.ser. A, 35 (2015), 1103. doi: 10.3934/dcds.2015.35.1103. Google Scholar

[14]

T. Ma and S. H. Wang, Duality theory of strong interactions,, EJTP, 11 (2014), 101. Google Scholar

[15]

T. Ma and S. H. Wang, Gravitational field equations and theory of dark matter and dark energy,, Discrete and Continuous Dynamical systems Ser. A., 34 (2014), 335. doi: 10.3934/dcds.2014.34.335. Google Scholar

[16]

T. Ma and S. H. Wang, Astrophysical dynamics and cosmology,, J. Math. Study, 47 (2014), 305. Google Scholar

show all references

References:
[1]

R. D. Blandford and R. L. Znajek, Electromagnetic extraction of energy from Kerr black holes,, M.N.R.A.S., (). Google Scholar

[2]

R. D. Blandford and D. G. Payne, Hydromagnetic flows from accretion discs and the production of radio jets,, M.N.R.A.S., (). Google Scholar

[3]

M. Camenzind, Centrifugally driven MHD-winds in active galactic nuclei,, Astronomy and Astrophysics, (). Google Scholar

[4]

M. Camenzind, Hydromagnetic flows from rapidly rotating compact objects. I - Cold relativistic flows from rapid rotators,, Astronomy and Astrophysics, (). Google Scholar

[5]

H. D. Curtis, A study of occulting matrter in spiral nebulae,, Pub. Lick. Obs., 13 (1918), 43. Google Scholar

[6]

C. Hazard, M. B. Mackay and A. J. Shimmins, Investigation of the Radio Source 3C273 by the method of Lunar Occultations,, Nature, 197 (1963), 1037. Google Scholar

[7]

S. L. O'Dell, Radiation force on a relaticistic plasma and the eddington limit,, ApJ, (). Google Scholar

[8]

N. A. Pereyra, T. R. Kallman and J. M. Blondin, Hydrodynamical Models of Line-driven Accretion Disk Winds,, ApJ, (). Google Scholar

[9]

D. Proga, J. M. Stone and J.E.Drew, Radiation-driven winds from luminous accretion discs},, M.N.R.A.S., (). Google Scholar

[10]

D. Proga, J. M. Stone and J. E. Drew, Line-driven disc wind models with an improved line force,, M.N.R.A.S., (). Google Scholar

[11]

T. Ma and S. H. Wang, Dynamic bifurcation and stability in the Rayleigh-Benard convection,, Comm. Math, 2 (2004), 158. doi: 10.4310/CMS.2004.v2.n2.a2. Google Scholar

[12]

T. Ma and S. H. Wang, Phase Transition Dynamics,, Springer-Verklag, (2014). doi: 10.1007/978-1-4614-8963-4. Google Scholar

[13]

T. Ma and S. H. Wang, Unified field equations coupling four forces and principle of interaction dynamics,, Discrete and Continuous Dynamical Systems.ser. A, 35 (2015), 1103. doi: 10.3934/dcds.2015.35.1103. Google Scholar

[14]

T. Ma and S. H. Wang, Duality theory of strong interactions,, EJTP, 11 (2014), 101. Google Scholar

[15]

T. Ma and S. H. Wang, Gravitational field equations and theory of dark matter and dark energy,, Discrete and Continuous Dynamical systems Ser. A., 34 (2014), 335. doi: 10.3934/dcds.2014.34.335. Google Scholar

[16]

T. Ma and S. H. Wang, Astrophysical dynamics and cosmology,, J. Math. Study, 47 (2014), 305. Google Scholar

[1]

Sanjay Dharmavaram, Timothy J. Healey. Direct construction of symmetry-breaking directions in bifurcation problems with spherical symmetry. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1669-1684. doi: 10.3934/dcdss.2019112

[2]

Anna Goƚȩbiewska, Norimichi Hirano, Sƚawomir Rybicki. Global symmetry-breaking bifurcations of critical orbits of invariant functionals. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2005-2017. doi: 10.3934/dcdss.2019129

[3]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[4]

Mi-Ho Giga, Yoshikazu Giga. A subdifferential interpretation of crystalline motion under nonuniform driving force. Conference Publications, 1998, 1998 (Special) : 276-287. doi: 10.3934/proc.1998.1998.276

[5]

Fanni M. Sélley. Symmetry breaking in a globally coupled map of four sites. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3707-3734. doi: 10.3934/dcds.2018161

[6]

Lucio Cadeddu, Giovanni Porru. Symmetry breaking in problems involving semilinear equations. Conference Publications, 2011, 2011 (Special) : 219-228. doi: 10.3934/proc.2011.2011.219

[7]

Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886

[8]

Claudia Anedda, Giovanni Porru. Symmetry breaking and other features for Eigenvalue problems. Conference Publications, 2011, 2011 (Special) : 61-70. doi: 10.3934/proc.2011.2011.61

[9]

Eduard Feireisl, Dalibor Pražák. A stabilizing effect of a high-frequency driving force on the motion of a viscous, compressible, and heat conducting fluid. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 95-111. doi: 10.3934/dcdss.2009.2.95

[10]

Linfeng Mei, Zongming Guo. Morse indices and symmetry breaking for the Gelfand equation in expanding annuli. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1509-1523. doi: 10.3934/dcdsb.2017072

[11]

Matteo Negri. Crack propagation by a regularization of the principle of local symmetry. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 147-165. doi: 10.3934/dcdss.2013.6.147

[12]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅰ): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic & Related Models, 2017, 10 (1) : 33-59. doi: 10.3934/krm.2017002

[13]

Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505

[14]

Joshua Du, Liancheng Wang. Dispersion relations for supersonic multiple virtual jets. Conference Publications, 2011, 2011 (Special) : 381-390. doi: 10.3934/proc.2011.2011.381

[15]

Joshua Du. Kelvin-Helmholtz instability waves of supersonic multiple jets. Conference Publications, 2003, 2003 (Special) : 234-245. doi: 10.3934/proc.2003.2003.234

[16]

Michael Shearer, Nicholas Giffen. Shock formation and breaking in granular avalanches. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 693-714. doi: 10.3934/dcds.2010.27.693

[17]

Freddy Dumortier, Robert Roussarie. Canard cycles with two breaking parameters. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 787-806. doi: 10.3934/dcds.2007.17.787

[18]

P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883

[19]

Michael Herty, Reinhard Illner. Coupling of non-local driving behaviour with fundamental diagrams. Kinetic & Related Models, 2012, 5 (4) : 843-855. doi: 10.3934/krm.2012.5.843

[20]

Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic & Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]