May  2016, 21(3): 959-975. doi: 10.3934/dcdsb.2016.21.959

Oscillations of many interfaces in the near-shadow regime of two-component reaction-diffusion systems

1. 

Dalhousie University, Halifax, NS, Canada, Canada

Received  August 2014 Revised  October 2015 Published  January 2015

We consider the general class of two-component reaction-diffusion systems on a finite domain that admit interface solutions in one of the components, and we study the dynamics of $n$ interfaces in one dimension. In the limit where the second component has large diffusion, we fully characterize the possible behaviour of $n$ interfaces. We show that after the transients die out, the motion of $n$ interfaces is described by the motion of a single interface on the domain that is $1/n$ the size of the original domain. Depending on parameter regime and initial conditions, one of the following three outcomes results: (1) some interfaces collide; (2) all $n$ interfaces reach a symmetric steady state; (3) all $n$ interfaces oscillate indefinitely. In the latter case, the oscillations are described by a simple harmonic motion with even-numbered interfaces oscillating in phase while odd-numbered interfaces are oscillating in anti-phase. This extends a recent work by [McKay, Kolokolnikov, Muir, DCDS B(17), 2012] from two to any number of interfaces.
Citation: Shuangquan Xie, Theodore Kolokolnikov. Oscillations of many interfaces in the near-shadow regime of two-component reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 959-975. doi: 10.3934/dcdsb.2016.21.959
References:
[1]

M. Banerjee and S. Petrovski, Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system,, Theor Ecol, 4 (2011), 37. doi: 10.1007/s12080-010-0073-1.

[2]

W. Chen and M. J. Ward, Oscillatory instabilities and dynamics of multi-spike patterns for the one-dimensional gray-scott model,, European Journal of Applied Mathematics, 20 (2009), 187. doi: 10.1017/S0956792508007766.

[3]

S. Ei, H. Ikeda and T. Kawana, Dynamics of front solutions in a specific reaction-diffusion system in one dimension,, Japan J. Indust. Appl. Math., 25 (2008), 117. doi: 10.1007/BF03167516.

[4]

S. Gurevich, S. Amiranashvili and H.-G. Purwins, Breathing dissipative solitons in three-component reaction-diffusion system,, Physical Review E, 74 (2006). doi: 10.1103/PhysRevE.74.066201.

[5]

A. Hagberg and E. Meron, Pattern formation in non-gradient reaction-diffusion systems: the effect of front bifurcations,, Nonlinearity, 7 (1994), 805. doi: 10.1088/0951-7715/7/3/006.

[6]

D. Haim, G. Li, Q. Ouyang, W. D. McCormick, H. L. Swinney, A. Hagberg and E. Meron, Breathing spots in a reaction-diffusion system,, Physical review letters, 77 (1996).

[7]

H. Hardway and Y.-X. Li, Stationary and oscillatory fronts in a two-component genetic regulatory network model,, Physica D, 239 (2010), 1650. doi: 10.1016/j.physd.2010.04.009.

[8]

H. Ikeda and T. Ikeda, Bifurcation phenomena from standing pulse solutions in some reaction-diffusion systems,, Journal of Dynamics and Differential Equations, 12 (2000), 117. doi: 10.1023/A:1009098719440.

[9]

T. Ikeda and M. Mimura, An interfacial approach to regional segregation of two competing species mediated by a predator,, Journal of Mathematical Biology, 31 (1993), 215. doi: 10.1007/BF00166143.

[10]

T. Ikeda and Y. Nishiura, Pattern selection for two breathers,, SIAM Journal on Applied Mathematics, 54 (1994), 195. doi: 10.1137/S0036139992237250.

[11]

A. Kaminaga, V. K. Vanag and I. R. Epstein, A reaction-diffusion memory device,, Angewandte Chemie International Edition, 45 (2006), 3087.

[12]

S. Koga and Y. Kuramoto, Localized patterns in reaction-diffusion systems,, Progress of Theoretical Physics, 63 (1980), 106. doi: 10.1143/PTP.63.106.

[13]

T. Kolokolnikov and M. Tlidi, Spot deformation and replication in the two-dimensional belousov-zhabotinski reaction in a water-in-oil microemulsion,, Physical review letters, 98 (2007). doi: 10.1103/PhysRevLett.98.188303.

[14]

I. Lengyel and I. Epstein, Modeling of turing structures in the chlorite-iodide-malonic acid-starch reaction system,, Science, 251 (1991), 650. doi: 10.1126/science.251.4994.650.

[15]

Y.-X. Li, Tango waves in a bidomain model of fertilization calcium waves,, Physica D, 186 (2003), 27. doi: 10.1016/S0167-2789(03)00237-9.

[16]

R. McKay, T. Kolokolnikov and P. Muir, Interface oscillations in reaction-diffusion systems above the hopf bifurcation,, Discrete and Continuous Dynamical Systems. Series BA Journal Bridging Mathematics and Sciences., ().

[17]

E. Meron, H. Yizhaq and E. Gilad, Localized structures in dryland vegetation: forms and functions,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 17 (2007). doi: 10.1063/1.2767246.

[18]

C. Muratov and V. V. Osipov, General theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems,, Phys, 53 (1996), 3101. doi: 10.1103/PhysRevE.53.3101.

[19]

M. Nagayama, K.-i. Ueda and M. Yadome, Numerical approach to transient dynamics of oscillatory pulses in a bistable reaction-diffusion system,, Japan journal of industrial and applied mathematics, 27 (2010), 295. doi: 10.1007/s13160-010-0015-8.

[20]

Y. Nishiura and M. Mimura, Layer oscillations in reaction-diffusion systems,, SIAM J.Appl. Math, 49 (1989), 481. doi: 10.1137/0149029.

[21]

T. Ohta, A. Ito and A. Tetsuka, Self-organization in an excitable reaction-diffusion system: synchronization of oscillatory domains in one dimension,, Physical Review A, 42 (1990). doi: 10.1103/PhysRevA.42.3225.

[22]

M. Suzuki, T. Ohta, M. Mimura and H. Sakaguchi, Breathing and wiggling motions in three-species laterally inhibitory systems,, Physical Review E, 52 (1995), 3645. doi: 10.1103/PhysRevE.52.3645.

[23]

P. van Heijster, A. Doelman and T. J. Kaper, Pulse dynamics in a three-component system: Stability and bifurcations,, Physica D, 237 (2008), 3335. doi: 10.1016/j.physd.2008.07.014.

[24]

V. K. Vanag and I. R. Epstein, Localized patterns in reaction-diffusion systems,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 17 (2007). doi: 10.1063/1.2752494.

[25]

V. Volpert and S. Petrovskii, Reaction-diffusion waves in biology,, Physics of Life Reviews, 6 (2009), 267. doi: 10.1016/j.plrev.2009.10.002.

[26]

M. J. Ward and J. Wei, Hopf bifurcation and oscillatory instabilities of spike solutions for the one-dimensional gierer-meinhardt model,, J. Nonlinear Science, 13 (2003), 209. doi: 10.1007/s00332-002-0531-z.

show all references

References:
[1]

M. Banerjee and S. Petrovski, Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system,, Theor Ecol, 4 (2011), 37. doi: 10.1007/s12080-010-0073-1.

[2]

W. Chen and M. J. Ward, Oscillatory instabilities and dynamics of multi-spike patterns for the one-dimensional gray-scott model,, European Journal of Applied Mathematics, 20 (2009), 187. doi: 10.1017/S0956792508007766.

[3]

S. Ei, H. Ikeda and T. Kawana, Dynamics of front solutions in a specific reaction-diffusion system in one dimension,, Japan J. Indust. Appl. Math., 25 (2008), 117. doi: 10.1007/BF03167516.

[4]

S. Gurevich, S. Amiranashvili and H.-G. Purwins, Breathing dissipative solitons in three-component reaction-diffusion system,, Physical Review E, 74 (2006). doi: 10.1103/PhysRevE.74.066201.

[5]

A. Hagberg and E. Meron, Pattern formation in non-gradient reaction-diffusion systems: the effect of front bifurcations,, Nonlinearity, 7 (1994), 805. doi: 10.1088/0951-7715/7/3/006.

[6]

D. Haim, G. Li, Q. Ouyang, W. D. McCormick, H. L. Swinney, A. Hagberg and E. Meron, Breathing spots in a reaction-diffusion system,, Physical review letters, 77 (1996).

[7]

H. Hardway and Y.-X. Li, Stationary and oscillatory fronts in a two-component genetic regulatory network model,, Physica D, 239 (2010), 1650. doi: 10.1016/j.physd.2010.04.009.

[8]

H. Ikeda and T. Ikeda, Bifurcation phenomena from standing pulse solutions in some reaction-diffusion systems,, Journal of Dynamics and Differential Equations, 12 (2000), 117. doi: 10.1023/A:1009098719440.

[9]

T. Ikeda and M. Mimura, An interfacial approach to regional segregation of two competing species mediated by a predator,, Journal of Mathematical Biology, 31 (1993), 215. doi: 10.1007/BF00166143.

[10]

T. Ikeda and Y. Nishiura, Pattern selection for two breathers,, SIAM Journal on Applied Mathematics, 54 (1994), 195. doi: 10.1137/S0036139992237250.

[11]

A. Kaminaga, V. K. Vanag and I. R. Epstein, A reaction-diffusion memory device,, Angewandte Chemie International Edition, 45 (2006), 3087.

[12]

S. Koga and Y. Kuramoto, Localized patterns in reaction-diffusion systems,, Progress of Theoretical Physics, 63 (1980), 106. doi: 10.1143/PTP.63.106.

[13]

T. Kolokolnikov and M. Tlidi, Spot deformation and replication in the two-dimensional belousov-zhabotinski reaction in a water-in-oil microemulsion,, Physical review letters, 98 (2007). doi: 10.1103/PhysRevLett.98.188303.

[14]

I. Lengyel and I. Epstein, Modeling of turing structures in the chlorite-iodide-malonic acid-starch reaction system,, Science, 251 (1991), 650. doi: 10.1126/science.251.4994.650.

[15]

Y.-X. Li, Tango waves in a bidomain model of fertilization calcium waves,, Physica D, 186 (2003), 27. doi: 10.1016/S0167-2789(03)00237-9.

[16]

R. McKay, T. Kolokolnikov and P. Muir, Interface oscillations in reaction-diffusion systems above the hopf bifurcation,, Discrete and Continuous Dynamical Systems. Series BA Journal Bridging Mathematics and Sciences., ().

[17]

E. Meron, H. Yizhaq and E. Gilad, Localized structures in dryland vegetation: forms and functions,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 17 (2007). doi: 10.1063/1.2767246.

[18]

C. Muratov and V. V. Osipov, General theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems,, Phys, 53 (1996), 3101. doi: 10.1103/PhysRevE.53.3101.

[19]

M. Nagayama, K.-i. Ueda and M. Yadome, Numerical approach to transient dynamics of oscillatory pulses in a bistable reaction-diffusion system,, Japan journal of industrial and applied mathematics, 27 (2010), 295. doi: 10.1007/s13160-010-0015-8.

[20]

Y. Nishiura and M. Mimura, Layer oscillations in reaction-diffusion systems,, SIAM J.Appl. Math, 49 (1989), 481. doi: 10.1137/0149029.

[21]

T. Ohta, A. Ito and A. Tetsuka, Self-organization in an excitable reaction-diffusion system: synchronization of oscillatory domains in one dimension,, Physical Review A, 42 (1990). doi: 10.1103/PhysRevA.42.3225.

[22]

M. Suzuki, T. Ohta, M. Mimura and H. Sakaguchi, Breathing and wiggling motions in three-species laterally inhibitory systems,, Physical Review E, 52 (1995), 3645. doi: 10.1103/PhysRevE.52.3645.

[23]

P. van Heijster, A. Doelman and T. J. Kaper, Pulse dynamics in a three-component system: Stability and bifurcations,, Physica D, 237 (2008), 3335. doi: 10.1016/j.physd.2008.07.014.

[24]

V. K. Vanag and I. R. Epstein, Localized patterns in reaction-diffusion systems,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 17 (2007). doi: 10.1063/1.2752494.

[25]

V. Volpert and S. Petrovskii, Reaction-diffusion waves in biology,, Physics of Life Reviews, 6 (2009), 267. doi: 10.1016/j.plrev.2009.10.002.

[26]

M. J. Ward and J. Wei, Hopf bifurcation and oscillatory instabilities of spike solutions for the one-dimensional gierer-meinhardt model,, J. Nonlinear Science, 13 (2003), 209. doi: 10.1007/s00332-002-0531-z.

[1]

Joseph G. Yan, Dong-Ming Hwang. Pattern formation in reaction-diffusion systems with $D_2$-symmetric kinetics. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 255-270. doi: 10.3934/dcds.1996.2.255

[2]

Rebecca McKay, Theodore Kolokolnikov, Paul Muir. Interface oscillations in reaction-diffusion systems above the Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2523-2543. doi: 10.3934/dcdsb.2012.17.2523

[3]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[4]

Matthias Büger. Torsion numbers, a tool for the examination of symmetric reaction-diffusion systems related to oscillation numbers. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 691-708. doi: 10.3934/dcds.1998.4.691

[5]

Hongyan Zhang, Siyu Liu, Yue Zhang. Dynamics and spatiotemporal pattern formations of a homogeneous reaction-diffusion Thomas model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1149-1164. doi: 10.3934/dcdss.2017062

[6]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[7]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[8]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[9]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[10]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[11]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[12]

Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809

[13]

Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49

[14]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[15]

C. van der Mee, Stella Vernier Piro. Travelling waves for solid-gas reaction-diffusion systems. Conference Publications, 2003, 2003 (Special) : 872-879. doi: 10.3934/proc.2003.2003.872

[16]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[17]

Masaharu Taniguchi. Instability of planar traveling waves in bistable reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 21-44. doi: 10.3934/dcdsb.2003.3.21

[18]

Wei Feng, Weihua Ruan, Xin Lu. On existence of wavefront solutions in mixed monotone reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 815-836. doi: 10.3934/dcdsb.2016.21.815

[19]

Yuncheng You. Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1415-1445. doi: 10.3934/cpaa.2011.10.1415

[20]

Boris Andreianov, Halima Labani. Preconditioning operators and $L^\infty$ attractor for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2179-2199. doi: 10.3934/cpaa.2012.11.2179

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]