• Previous Article
    Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients
  • DCDS-B Home
  • This Issue
  • Next Article
    Oscillations of many interfaces in the near-shadow regime of two-component reaction-diffusion systems
May  2016, 21(3): 977-996. doi: 10.3934/dcdsb.2016.21.977

Global stability of a multi-group model with generalized nonlinear incidence and vaccination age

1. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049

Received  June 2014 Revised  May 2015 Published  January 2016

A multi-group epidemic model with general nonlinear incidence and vaccination age structure has been formulated and studied. Mathematical analysis shows that the global stability of disease-free equilibrium and endemic equilibrium of the model are determined by the basic reproduction number $\mathcal{R}_0$: the disease-free equilibrium is globally asymptotically stable if $\mathcal{R}_0<1$, the endemic equilibrium is globally asymptotically stable if $\mathcal{R}_0>1$. The Lyapunov functionals for the global dynamics of the multi-group model are constructed by applying the theory of non-negative matrices and a novel grouping technique in estimating the derivative.
Citation: Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with generalized nonlinear incidence and vaccination age. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 977-996. doi: 10.3934/dcdsb.2016.21.977
References:
[1]

J. Q. Li, Y. L. Yang and Y. C. Zhou, Global stability of an epidemic model with latent stage and vaccination,, Nonlinear Anal.: Real World Appl., 12 (2011), 2163. doi: 10.1016/j.nonrwa.2010.12.030. Google Scholar

[2]

S. M. Blower and A. R. McLean, Prophylactic vaccines, risk behavior change, and the probability of eradicating HIV in San Francisco,, Science, 265 (1994), 1451. doi: 10.1126/science.8073289. Google Scholar

[3]

Y. Xiao and S. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model,, Nonlinear Anal.: Real World Appl., 11 (2010), 4154. doi: 10.1016/j.nonrwa.2010.05.002. Google Scholar

[4]

X. Y. Song, Y. Jiang and H. M. Wei, Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays,, Appl. Math. Comput., 214 (2009), 381. doi: 10.1016/j.amc.2009.04.005. Google Scholar

[5]

D. Q. Ding and X. H. Ding, Global stability of multi-group vaccination epidemic models with delays,, Nonlinear Anal.: Real World Appl., 12 (2011), 1991. doi: 10.1016/j.nonrwa.2010.12.015. Google Scholar

[6]

G. P. Sahu and J. Dhar, Analysis of an SVEIS epidemic model with partial temporary immunity and saturation incidence rate,, Appl. Math. Model., 36 (2012), 908. doi: 10.1016/j.apm.2011.07.044. Google Scholar

[7]

F. Hoppensteadt, An age-dependent epidemic model,, J. Franklin Inst., 297 (1974), 325. doi: 10.1016/0016-0032(74)90037-4. Google Scholar

[8]

F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics and Epiemics,, SIAM Publications, (1975). doi: 10.1137/1.9781611970487. Google Scholar

[9]

M. Iannelli, M. Martcheva and X. Z. Li, Strain replacement in an epidemic model with super-infection and perfect vaccination,, Math. Biosci., 195 (2005), 23. doi: 10.1016/j.mbs.2005.01.004. Google Scholar

[10]

X. Z. Li, J. Wang and M. Ghosh, Stability and bifurcation of an SIVS epidemic model with treatment and age of vaccination,, Appl. Math. Model., 34 (2010), 437. doi: 10.1016/j.apm.2009.06.002. Google Scholar

[11]

X. C. Duan, S. L. Yuan and X. Z. Li, Global stability of an SVIR model with age of vaccination,, Appl. Math. Comput., 226 (2014), 528. doi: 10.1016/j.amc.2013.10.073. Google Scholar

[12]

G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics,, Marcel Dekker. New York, (1985). Google Scholar

[13]

P. Magal, Compact attractors for time periodic age-structured population models,, Electron. J. Diff. Equs., 65 (2001), 1. Google Scholar

[14]

Z. Liu, P. Magal and S. Ruan, Center-unstable manfold theorem for non-densely defined Cauchy problem, and the stability of bifurcation periodic orbits by Hopf bifurcation,, Canadian Applied Mathematics Quarterly, 20 (2012), 135. Google Scholar

[15]

P. Magal, C. C. McCluske and G. F. Webb, Liapunov functional and global asymptotic stability for an infection-age model,, Applicable Analysis, 89 (2010), 1109. doi: 10.1080/00036810903208122. Google Scholar

[16]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence,, Graduate Studies in Mathematics, (2011). doi: 10.1090/gsm/118. Google Scholar

[17]

G. S. Wolkowicz, H. Xia and S. Ruan, Competition in the chemostat: A distributed delay model and its global asymptotic behavior,, SIAM J. Appl. Math., 57 (1997), 1281. doi: 10.1137/S0036139995289842. Google Scholar

[18]

R. Y. Sun and J. P. Shi, Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates,, Appl. Math. Comput., 218 (2011), 280. doi: 10.1016/j.amc.2011.05.056. Google Scholar

[19]

H. Chen and J. T. Sun, Global stability of delay multigroup epidemic models with group mixing and nonlinear incidence rates,, Appl. Math. Comput., 218 (2011), 4391. doi: 10.1016/j.amc.2011.10.015. Google Scholar

[20]

T. Kuniya, Global stability of a multi-group SVIR epidemic model,, Nonlinear Anal.: Real World Appl., 14 (2013), 1135. doi: 10.1016/j.nonrwa.2012.09.004. Google Scholar

[21]

H. Y. Shu, D. J. Fan and J. J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,, Nonlinear Anal.: Real World Appl., 13 (2012), 1581. doi: 10.1016/j.nonrwa.2011.11.016. Google Scholar

[22]

H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Canad. Appl. Math. Quart., 14 (2006), 259. Google Scholar

[23]

H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions,, Proc. Amer. Math. Soc., 136 (2008), 2793. doi: 10.1090/S0002-9939-08-09341-6. Google Scholar

[24]

M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks,, J. Differential Equations, 248 (2010), 1. doi: 10.1016/j.jde.2009.09.003. Google Scholar

[25]

H. Guo and M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413. doi: 10.3934/dcdsb.2012.17.2413. Google Scholar

[26]

A. Berman and R. J. Plemmons, Nonnegative Matrices in Mathematical Science,, Academic Press, (1979). Google Scholar

[27]

J. P. LaSalle, The Stability of Dynamical Systems,, SIAM, (1976). Google Scholar

[28]

H. I. Freedman, M. X. Tang and S. G. Ruan, Uniform persistence and flows near a closed positively invariant set,, J. Dyn. Differ. Equat., 6 (1994), 583. Google Scholar

[29]

M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size,, Math. Biosci., 160 (1999), 191. doi: 10.1016/S0025-5564(99)00030-9. Google Scholar

[30]

N. P. Bhatia and G. P. Szego, Dynamical Systems: Stability Theory and Applications,, Lecture Notes in Mathematics, 35 (1967). Google Scholar

[31]

H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition,, Cambridge University Press, (1995). doi: 10.1017/CBO9780511530043. Google Scholar

show all references

References:
[1]

J. Q. Li, Y. L. Yang and Y. C. Zhou, Global stability of an epidemic model with latent stage and vaccination,, Nonlinear Anal.: Real World Appl., 12 (2011), 2163. doi: 10.1016/j.nonrwa.2010.12.030. Google Scholar

[2]

S. M. Blower and A. R. McLean, Prophylactic vaccines, risk behavior change, and the probability of eradicating HIV in San Francisco,, Science, 265 (1994), 1451. doi: 10.1126/science.8073289. Google Scholar

[3]

Y. Xiao and S. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model,, Nonlinear Anal.: Real World Appl., 11 (2010), 4154. doi: 10.1016/j.nonrwa.2010.05.002. Google Scholar

[4]

X. Y. Song, Y. Jiang and H. M. Wei, Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays,, Appl. Math. Comput., 214 (2009), 381. doi: 10.1016/j.amc.2009.04.005. Google Scholar

[5]

D. Q. Ding and X. H. Ding, Global stability of multi-group vaccination epidemic models with delays,, Nonlinear Anal.: Real World Appl., 12 (2011), 1991. doi: 10.1016/j.nonrwa.2010.12.015. Google Scholar

[6]

G. P. Sahu and J. Dhar, Analysis of an SVEIS epidemic model with partial temporary immunity and saturation incidence rate,, Appl. Math. Model., 36 (2012), 908. doi: 10.1016/j.apm.2011.07.044. Google Scholar

[7]

F. Hoppensteadt, An age-dependent epidemic model,, J. Franklin Inst., 297 (1974), 325. doi: 10.1016/0016-0032(74)90037-4. Google Scholar

[8]

F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics and Epiemics,, SIAM Publications, (1975). doi: 10.1137/1.9781611970487. Google Scholar

[9]

M. Iannelli, M. Martcheva and X. Z. Li, Strain replacement in an epidemic model with super-infection and perfect vaccination,, Math. Biosci., 195 (2005), 23. doi: 10.1016/j.mbs.2005.01.004. Google Scholar

[10]

X. Z. Li, J. Wang and M. Ghosh, Stability and bifurcation of an SIVS epidemic model with treatment and age of vaccination,, Appl. Math. Model., 34 (2010), 437. doi: 10.1016/j.apm.2009.06.002. Google Scholar

[11]

X. C. Duan, S. L. Yuan and X. Z. Li, Global stability of an SVIR model with age of vaccination,, Appl. Math. Comput., 226 (2014), 528. doi: 10.1016/j.amc.2013.10.073. Google Scholar

[12]

G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics,, Marcel Dekker. New York, (1985). Google Scholar

[13]

P. Magal, Compact attractors for time periodic age-structured population models,, Electron. J. Diff. Equs., 65 (2001), 1. Google Scholar

[14]

Z. Liu, P. Magal and S. Ruan, Center-unstable manfold theorem for non-densely defined Cauchy problem, and the stability of bifurcation periodic orbits by Hopf bifurcation,, Canadian Applied Mathematics Quarterly, 20 (2012), 135. Google Scholar

[15]

P. Magal, C. C. McCluske and G. F. Webb, Liapunov functional and global asymptotic stability for an infection-age model,, Applicable Analysis, 89 (2010), 1109. doi: 10.1080/00036810903208122. Google Scholar

[16]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence,, Graduate Studies in Mathematics, (2011). doi: 10.1090/gsm/118. Google Scholar

[17]

G. S. Wolkowicz, H. Xia and S. Ruan, Competition in the chemostat: A distributed delay model and its global asymptotic behavior,, SIAM J. Appl. Math., 57 (1997), 1281. doi: 10.1137/S0036139995289842. Google Scholar

[18]

R. Y. Sun and J. P. Shi, Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates,, Appl. Math. Comput., 218 (2011), 280. doi: 10.1016/j.amc.2011.05.056. Google Scholar

[19]

H. Chen and J. T. Sun, Global stability of delay multigroup epidemic models with group mixing and nonlinear incidence rates,, Appl. Math. Comput., 218 (2011), 4391. doi: 10.1016/j.amc.2011.10.015. Google Scholar

[20]

T. Kuniya, Global stability of a multi-group SVIR epidemic model,, Nonlinear Anal.: Real World Appl., 14 (2013), 1135. doi: 10.1016/j.nonrwa.2012.09.004. Google Scholar

[21]

H. Y. Shu, D. J. Fan and J. J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,, Nonlinear Anal.: Real World Appl., 13 (2012), 1581. doi: 10.1016/j.nonrwa.2011.11.016. Google Scholar

[22]

H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Canad. Appl. Math. Quart., 14 (2006), 259. Google Scholar

[23]

H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions,, Proc. Amer. Math. Soc., 136 (2008), 2793. doi: 10.1090/S0002-9939-08-09341-6. Google Scholar

[24]

M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks,, J. Differential Equations, 248 (2010), 1. doi: 10.1016/j.jde.2009.09.003. Google Scholar

[25]

H. Guo and M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413. doi: 10.3934/dcdsb.2012.17.2413. Google Scholar

[26]

A. Berman and R. J. Plemmons, Nonnegative Matrices in Mathematical Science,, Academic Press, (1979). Google Scholar

[27]

J. P. LaSalle, The Stability of Dynamical Systems,, SIAM, (1976). Google Scholar

[28]

H. I. Freedman, M. X. Tang and S. G. Ruan, Uniform persistence and flows near a closed positively invariant set,, J. Dyn. Differ. Equat., 6 (1994), 583. Google Scholar

[29]

M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size,, Math. Biosci., 160 (1999), 191. doi: 10.1016/S0025-5564(99)00030-9. Google Scholar

[30]

N. P. Bhatia and G. P. Szego, Dynamical Systems: Stability Theory and Applications,, Lecture Notes in Mathematics, 35 (1967). Google Scholar

[31]

H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition,, Cambridge University Press, (1995). doi: 10.1017/CBO9780511530043. Google Scholar

[1]

Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1083-1106. doi: 10.3934/mbe.2015.12.1083

[2]

Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057

[3]

Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba. A multi-group SIR epidemic model with age structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3515-3550. doi: 10.3934/dcdsb.2016109

[4]

Jinliang Wang, Xianning Liu, Toshikazu Kuniya, Jingmei Pang. Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2795-2812. doi: 10.3934/dcdsb.2017151

[5]

Gunduz Caginalp, Mark DeSantis. Multi-group asset flow equations and stability. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 109-150. doi: 10.3934/dcdsb.2011.16.109

[6]

Chunmei Zhang, Wenxue Li, Ke Wang. Graph-theoretic approach to stability of multi-group models with dispersal. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 259-280. doi: 10.3934/dcdsb.2015.20.259

[7]

Jinliang Wang, Hongying Shu. Global analysis on a class of multi-group SEIR model with latency and relapse. Mathematical Biosciences & Engineering, 2016, 13 (1) : 209-225. doi: 10.3934/mbe.2016.13.209

[8]

Rui Wang, Xiaoyue Li, Denis S. Mukama. On stochastic multi-group Lotka-Volterra ecosystems with regime switching. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3499-3528. doi: 10.3934/dcdsb.2017177

[9]

Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105

[10]

Jing Hui, Lansun Chen. Impulsive vaccination of sir epidemic models with nonlinear incidence rates. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 595-605. doi: 10.3934/dcdsb.2004.4.595

[11]

Yoshiaki Muroya. A Lotka-Volterra system with patch structure (related to a multi-group SI epidemic model). Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 999-1008. doi: 10.3934/dcdss.2015.8.999

[12]

Lili Liu, Xianning Liu, Jinliang Wang. Threshold dynamics of a delayed multi-group heroin epidemic model in heterogeneous populations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2615-2630. doi: 10.3934/dcdsb.2016064

[13]

Xiaomei Feng, Zhidong Teng, Fengqin Zhang. Global dynamics of a general class of multi-group epidemic models with latency and relapse. Mathematical Biosciences & Engineering, 2015, 12 (1) : 99-115. doi: 10.3934/mbe.2015.12.99

[14]

Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57

[15]

Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki. Lyapunov functionals for multistrain models with infinite delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 507-536. doi: 10.3934/dcdsb.2017025

[16]

Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki. Lyapunov functionals for virus-immune models with infinite delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3093-3114. doi: 10.3934/dcdsb.2015.20.3093

[17]

Xichao Duan, Sanling Yuan, Kaifa Wang. Dynamics of a diffusive age-structured HBV model with saturating incidence. Mathematical Biosciences & Engineering, 2016, 13 (5) : 935-968. doi: 10.3934/mbe.2016024

[18]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[19]

Diána H. Knipl, Gergely Röst. Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks. Mathematical Biosciences & Engineering, 2011, 8 (1) : 123-139. doi: 10.3934/mbe.2011.8.123

[20]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure & Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]