Citation: |
[1] |
M. Benedicks, Positive harmonic functions vanishing on the boundary of certain domains in $R^n$, Ark. Mat., 18 (1980), 53-72.doi: 10.1007/BF02384681. |
[2] |
L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J., 30 (1981), 621-640.doi: 10.1512/iumj.1981.30.30049. |
[3] |
M. C. Cranston and T. S. Salisbury, Martin boundaries of sectorial domains, Ark. Mat., 31 (1993), 27-49.doi: 10.1007/BF02559496. |
[4] |
B. E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal., 65 (1977), 275-288.doi: 10.1007/BF00280445. |
[5] |
E. B. Fabes, M. V. Safonov and Y. Yuan, Behavior near the boundary of positive solutions of second order parabolic equations. II, Trans. Amer. Math. Soc., 351 (1999), 4947-4961.doi: 10.1090/S0002-9947-99-02487-3. |
[6] |
S. J. Gardiner, The Martin boundary of NTA strips, Bull. London Math. Soc., 22 (1990), 163-166.doi: 10.1112/blms/22.2.163. |
[7] |
M. Ghergu and J. Pres, Positive harmonic functions that vanish on a subset of a cylindrical surface, Potential Anal., 31 (2009), 147-181.doi: 10.1007/s11118-009-9129-5. |
[8] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, vol. 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag, second ed., 1983.doi: 10.1007/978-3-642-61798-0. |
[9] |
R. A. Hunt and R. L. Wheeden, Positive harmonic functions on lipschitz domains, Transactions of the American Mathematical Society, 147 (1970), 507-527.doi: 10.1090/S0002-9947-1970-0274787-0. |
[10] |
D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. in Math., 46 (1982), 80-147.doi: 10.1016/0001-8708(82)90055-X. |
[11] |
E. M. Landis and N. S. Nadirashvili, Positive solutions of second-order equations in unbounded domains, Mat. Sb. (N.S.), 126 (1985), 133-139, 144. |
[12] |
A. Lömker, Martin boundaries of quasi-sectorial domains, Potential Anal., 13 (2000), 11-67.doi: 10.1023/A:1008774010423. |
[13] |
R. S. Martin, Minimal positive harmonic functions, Transactions of the American Mathematical Society, 49 (1941), 137-172.doi: 10.1090/S0002-9947-1941-0003919-6. |
[14] |
M. Murata, On construction of Martin boundaries for second order elliptic equations, Publ. Res. Inst. Math. Sci., 26 (1990), 585-627.doi: 10.2977/prims/1195170848. |
[15] |
J. Pres, Positive harmonic functions on comb-like domains, Ann. Acad. Sci. Fenn. Math., 36 (2011), 577-591.doi: 10.5186/aasfm.2011.3630. |
[16] |
M. G. Shur, The martin boundary for a linear, elliptic, second-order operator, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 27 (1963), 45-60. |
[17] |
J. C. Taylor, On the martin compactification of a bounded lipschitz domain in a riemannian manifold, Annales de l'institut Fourier, 28 (1978), 25-52.doi: 10.5802/aif.688. |
[18] |
J. M. G. Wu, Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains, Ann. Inst. Fourier (Grenoble), 28 (1978), 147-167.doi: 10.5802/aif.719. |