July  2016, 21(5): 1389-1400. doi: 10.3934/dcdsb.2016001

Positive solutions to elliptic equations in unbounded cylinder

1. 

School of Mathematics and Information Science, Shanghai Lixin University of Commerce, Shanghai, 201620, China

2. 

Department of Mathematics, and MOE-LSC, Shanghai Jiaotong University, Shanghai 200240, China

Received  April 2014 Revised  August 2015 Published  April 2016

This paper investigates the positive solutions for second order linear elliptic equation in unbounded cylinder with zero boundary condition. We prove there exist two special positive solutions with exponential growth at one end while exponential decay at the other, and all the positive solutions are linear combinations of these two.
Citation: Jun Bao, Lihe Wang, Chunqin Zhou. Positive solutions to elliptic equations in unbounded cylinder. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1389-1400. doi: 10.3934/dcdsb.2016001
References:
[1]

M. Benedicks, Positive harmonic functions vanishing on the boundary of certain domains in $R^n$,, Ark. Mat., 18 (1980), 53. doi: 10.1007/BF02384681. Google Scholar

[2]

L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form,, Indiana Univ. Math. J., 30 (1981), 621. doi: 10.1512/iumj.1981.30.30049. Google Scholar

[3]

M. C. Cranston and T. S. Salisbury, Martin boundaries of sectorial domains,, Ark. Mat., 31 (1993), 27. doi: 10.1007/BF02559496. Google Scholar

[4]

B. E. J. Dahlberg, Estimates of harmonic measure,, Arch. Rational Mech. Anal., 65 (1977), 275. doi: 10.1007/BF00280445. Google Scholar

[5]

E. B. Fabes, M. V. Safonov and Y. Yuan, Behavior near the boundary of positive solutions of second order parabolic equations. II,, Trans. Amer. Math. Soc., 351 (1999), 4947. doi: 10.1090/S0002-9947-99-02487-3. Google Scholar

[6]

S. J. Gardiner, The Martin boundary of NTA strips,, Bull. London Math. Soc., 22 (1990), 163. doi: 10.1112/blms/22.2.163. Google Scholar

[7]

M. Ghergu and J. Pres, Positive harmonic functions that vanish on a subset of a cylindrical surface,, Potential Anal., 31 (2009), 147. doi: 10.1007/s11118-009-9129-5. Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, vol. 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[9]

R. A. Hunt and R. L. Wheeden, Positive harmonic functions on lipschitz domains,, Transactions of the American Mathematical Society, 147 (1970), 507. doi: 10.1090/S0002-9947-1970-0274787-0. Google Scholar

[10]

D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains,, Adv. in Math., 46 (1982), 80. doi: 10.1016/0001-8708(82)90055-X. Google Scholar

[11]

E. M. Landis and N. S. Nadirashvili, Positive solutions of second-order equations in unbounded domains,, Mat. Sb. (N.S.), 126 (1985), 133. Google Scholar

[12]

A. Lömker, Martin boundaries of quasi-sectorial domains,, Potential Anal., 13 (2000), 11. doi: 10.1023/A:1008774010423. Google Scholar

[13]

R. S. Martin, Minimal positive harmonic functions,, Transactions of the American Mathematical Society, 49 (1941), 137. doi: 10.1090/S0002-9947-1941-0003919-6. Google Scholar

[14]

M. Murata, On construction of Martin boundaries for second order elliptic equations,, Publ. Res. Inst. Math. Sci., 26 (1990), 585. doi: 10.2977/prims/1195170848. Google Scholar

[15]

J. Pres, Positive harmonic functions on comb-like domains,, Ann. Acad. Sci. Fenn. Math., 36 (2011), 577. doi: 10.5186/aasfm.2011.3630. Google Scholar

[16]

M. G. Shur, The martin boundary for a linear, elliptic, second-order operator,, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 27 (1963), 45. Google Scholar

[17]

J. C. Taylor, On the martin compactification of a bounded lipschitz domain in a riemannian manifold,, Annales de l'institut Fourier, 28 (1978), 25. doi: 10.5802/aif.688. Google Scholar

[18]

J. M. G. Wu, Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains,, Ann. Inst. Fourier (Grenoble), 28 (1978), 147. doi: 10.5802/aif.719. Google Scholar

show all references

References:
[1]

M. Benedicks, Positive harmonic functions vanishing on the boundary of certain domains in $R^n$,, Ark. Mat., 18 (1980), 53. doi: 10.1007/BF02384681. Google Scholar

[2]

L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form,, Indiana Univ. Math. J., 30 (1981), 621. doi: 10.1512/iumj.1981.30.30049. Google Scholar

[3]

M. C. Cranston and T. S. Salisbury, Martin boundaries of sectorial domains,, Ark. Mat., 31 (1993), 27. doi: 10.1007/BF02559496. Google Scholar

[4]

B. E. J. Dahlberg, Estimates of harmonic measure,, Arch. Rational Mech. Anal., 65 (1977), 275. doi: 10.1007/BF00280445. Google Scholar

[5]

E. B. Fabes, M. V. Safonov and Y. Yuan, Behavior near the boundary of positive solutions of second order parabolic equations. II,, Trans. Amer. Math. Soc., 351 (1999), 4947. doi: 10.1090/S0002-9947-99-02487-3. Google Scholar

[6]

S. J. Gardiner, The Martin boundary of NTA strips,, Bull. London Math. Soc., 22 (1990), 163. doi: 10.1112/blms/22.2.163. Google Scholar

[7]

M. Ghergu and J. Pres, Positive harmonic functions that vanish on a subset of a cylindrical surface,, Potential Anal., 31 (2009), 147. doi: 10.1007/s11118-009-9129-5. Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, vol. 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[9]

R. A. Hunt and R. L. Wheeden, Positive harmonic functions on lipschitz domains,, Transactions of the American Mathematical Society, 147 (1970), 507. doi: 10.1090/S0002-9947-1970-0274787-0. Google Scholar

[10]

D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains,, Adv. in Math., 46 (1982), 80. doi: 10.1016/0001-8708(82)90055-X. Google Scholar

[11]

E. M. Landis and N. S. Nadirashvili, Positive solutions of second-order equations in unbounded domains,, Mat. Sb. (N.S.), 126 (1985), 133. Google Scholar

[12]

A. Lömker, Martin boundaries of quasi-sectorial domains,, Potential Anal., 13 (2000), 11. doi: 10.1023/A:1008774010423. Google Scholar

[13]

R. S. Martin, Minimal positive harmonic functions,, Transactions of the American Mathematical Society, 49 (1941), 137. doi: 10.1090/S0002-9947-1941-0003919-6. Google Scholar

[14]

M. Murata, On construction of Martin boundaries for second order elliptic equations,, Publ. Res. Inst. Math. Sci., 26 (1990), 585. doi: 10.2977/prims/1195170848. Google Scholar

[15]

J. Pres, Positive harmonic functions on comb-like domains,, Ann. Acad. Sci. Fenn. Math., 36 (2011), 577. doi: 10.5186/aasfm.2011.3630. Google Scholar

[16]

M. G. Shur, The martin boundary for a linear, elliptic, second-order operator,, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 27 (1963), 45. Google Scholar

[17]

J. C. Taylor, On the martin compactification of a bounded lipschitz domain in a riemannian manifold,, Annales de l'institut Fourier, 28 (1978), 25. doi: 10.5802/aif.688. Google Scholar

[18]

J. M. G. Wu, Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains,, Ann. Inst. Fourier (Grenoble), 28 (1978), 147. doi: 10.5802/aif.719. Google Scholar

[1]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[2]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[3]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[4]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[5]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[6]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[7]

Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure & Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69

[8]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[9]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[10]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[11]

Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291

[12]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[13]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[14]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[15]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[16]

Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335

[17]

Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control & Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022

[18]

Shigeaki Koike, Takahiro Kosugi. Remarks on the comparison principle for quasilinear PDE with no zeroth order terms. Communications on Pure & Applied Analysis, 2015, 14 (1) : 133-142. doi: 10.3934/cpaa.2015.14.133

[19]

Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739

[20]

Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic & Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]