July  2016, 21(5): 1421-1434. doi: 10.3934/dcdsb.2016003

Free boundary problem of Barenblatt equation in stochastic control

1. 

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

2. 

School of Finance, Guangdong University of Foreign Studies, Guangzhou 510006, China

Received  January 2014 Revised  March 2014 Published  April 2016

The following type of parabolic Barenblatt equations
                                           min {$\partial_t V - \mathcal{L}_1 V, \partial_t V-\mathcal{L}_2 V$} = 0
is studied, where $\mathcal{L}_1$ and $\mathcal{L}_2$ are different elliptic operators of second order. The (unknown) free boundary of the problem is a divisional curve, which is the optimal insured boundary in our stochastic control problem. It will be proved that the free boundary is a differentiable curve.
    To the best of our knowledge, this is the first result on free boundary for Barenblatt Equation. We will establish the model and verification theorem by the use of stochastic analysis. The existence of classical solution to the HJB equation and the differentiability of free boundary are obtained by PDE techniques.
Citation: Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003
References:
[1]

A. Friedman, Partial Differential Equations of Parabolic Type,, Prentice-Hall Inc., (1964).   Google Scholar

[2]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[3]

S. Kamin, L. A. Peletier and J. L. Vazquez, On the Barenblatt equation of elasto-plastic filtration,, Indiana Math. J., 40 (1991), 1333.  doi: 10.1512/iumj.1991.40.40060.  Google Scholar

[4]

D. Kelome and A. Swiech, Viscosity solutions of an infinite-dimensional Black-Scholes-Barenblatt equation,, Appl Math Optim., 47 (2003), 253.  doi: 10.1007/s00245-003-0764-8.  Google Scholar

[5]

A. Kolesnichenko and G. Shopina, Valuation of Portfolios Under Uncertain Volatility: Black-Scholes Barenblatt Equations and the Static Hedging,, {Technical report, (2007).   Google Scholar

[6]

N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain,, Izv. Akad. Nayk SSSR, 47 (1983), 75.   Google Scholar

[7]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, (1967).   Google Scholar

[8]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific, (1996).  doi: 10.1142/3302.  Google Scholar

[9]

H. Pham, Continuous-time Stochastic Control and Optimization with Financial Applications,, Springer-Verlag, (2009).  doi: 10.1007/978-3-540-89500-8.  Google Scholar

[10]

J. Rochet and S. Villeneuve, Liquidity management and coporate demand for hedging and insurance,, J. Finan. Intermediation, 20 (2011), 303.   Google Scholar

[11]

S. E. Shreve, Stochastic Calculus for Finance II,, Springer, (2004).   Google Scholar

[12]

T. Vargiolu, Existence, Uniqueness and Smoothness for the Black-Scholes-Barenblatt Equation,, Technical Report of the Department of Pure and Appl. Math. of the University of Padava, (2001).   Google Scholar

show all references

References:
[1]

A. Friedman, Partial Differential Equations of Parabolic Type,, Prentice-Hall Inc., (1964).   Google Scholar

[2]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[3]

S. Kamin, L. A. Peletier and J. L. Vazquez, On the Barenblatt equation of elasto-plastic filtration,, Indiana Math. J., 40 (1991), 1333.  doi: 10.1512/iumj.1991.40.40060.  Google Scholar

[4]

D. Kelome and A. Swiech, Viscosity solutions of an infinite-dimensional Black-Scholes-Barenblatt equation,, Appl Math Optim., 47 (2003), 253.  doi: 10.1007/s00245-003-0764-8.  Google Scholar

[5]

A. Kolesnichenko and G. Shopina, Valuation of Portfolios Under Uncertain Volatility: Black-Scholes Barenblatt Equations and the Static Hedging,, {Technical report, (2007).   Google Scholar

[6]

N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain,, Izv. Akad. Nayk SSSR, 47 (1983), 75.   Google Scholar

[7]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, (1967).   Google Scholar

[8]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific, (1996).  doi: 10.1142/3302.  Google Scholar

[9]

H. Pham, Continuous-time Stochastic Control and Optimization with Financial Applications,, Springer-Verlag, (2009).  doi: 10.1007/978-3-540-89500-8.  Google Scholar

[10]

J. Rochet and S. Villeneuve, Liquidity management and coporate demand for hedging and insurance,, J. Finan. Intermediation, 20 (2011), 303.   Google Scholar

[11]

S. E. Shreve, Stochastic Calculus for Finance II,, Springer, (2004).   Google Scholar

[12]

T. Vargiolu, Existence, Uniqueness and Smoothness for the Black-Scholes-Barenblatt Equation,, Technical Report of the Department of Pure and Appl. Math. of the University of Padava, (2001).   Google Scholar

[1]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[2]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[3]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[4]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[5]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[6]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[9]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[10]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[11]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[12]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[13]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[14]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[15]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[16]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[17]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[18]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[19]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[20]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]