July  2016, 21(5): 1435-1444. doi: 10.3934/dcdsb.2016004

Convergence rate of free boundary of numerical scheme for American option

1. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260

2. 

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556

3. 

Department of Mathematics, Tongji University, Shanghai 200092

4. 

School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006

Received  September 2013 Published  April 2016

Based on the optimal estimate of convergence rate $O(\Delta x)$ of the value function of an explicit finite difference scheme for the American put option problem in [6], an $O(\sqrt{\Delta x})$ rate of convergence of the free boundary resulting from a general compatible numerical scheme to the true free boundary is proven. A new criterion for the compatibility of a generic numerical scheme to the PDE problem is presented. A numerical example is also included.
Citation: Xinfu Chen, Bei Hu, Jin Liang, Yajing Zhang. Convergence rate of free boundary of numerical scheme for American option. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1435-1444. doi: 10.3934/dcdsb.2016004
References:
[1]

X. Chen and J. Chadam, A mathematical analysis of the optimal exercise boundary for American put options,, SIAM Journal on Mathematical Analysis, 38 (2007), 1613. doi: 10.1137/S0036141003437708.

[2]

X. Chen, J. Chadam, L. Jiang and W. Zheng, Convexity of the exercise boundary of the American put option on a zero dividend asset,, Mathematical Finance, 18 (2008), 185. doi: 10.1111/j.1467-9965.2007.00328.x.

[3]

J. Cox and M. Rubinstein, Option pricing: A simplified approach,, J. Finan. Econ., 7 (1979), 229.

[4]

A. Friedman, Variational Principles and Free Boundary Problems,, John Wiley and Sons, (1982).

[5]

Hall, J., Options, Futures, and Other Derivatives,, Prentice-Hall, (1989).

[6]

B. Hu, L. Jiang and J. Liang, Optimal convergence rate of the explicit finite difference scheme for american options,, J. Comp. Appl. Math., 230 (2009), 583. doi: 10.1016/j.cam.2008.12.018.

[7]

L. Jiang, Mathematical Modeling and Methods for Option Pricing,, World Scientific, (2005). doi: 10.1142/5855.

[8]

L. Jiang and M. Dai, Convergence of the explicit difference scheme and the binomial tree method for American options,, J. Comp. Math., 22 (2004), 371.

[9]

L. Jiang and M. Dai, Convergence of binomial tree methods for European/American options path-depedent options,, SIAM J Numer. Anal., 42 (2004), 1094. doi: 10.1137/S0036142902414220.

[10]

J. Liang, B. Hu, L. Jiang and B. Bian, On the rate of convergence of the binomial tree scheme for American options,, Numerische Mathematik, 107 (2007), 333. doi: 10.1007/s00211-007-0091-0.

[11]

J. Liang, B. Hu and L. Jiang, Optimal convergence rate of the binomial tree scheme for American options with jump diffusion,, SIAM Financial Mathematics, 1 (2010), 30. doi: 10.1137/090746239.

[12]

R. Myneni, The pricing of the American option,, The Annals of Applied Probability, 2 (1992), 1. doi: 10.1214/aoap/1177005768.

[13]

X. Qian, C. Xu, L. Jiang and B. Bian, Convergence of the binomial tree method for American options in jump-diffusion model,, SIAM J. Numer. Anal., 42 (2005), 1899. doi: 10.1137/S0036142902409744.

[14]

C. Xu, X. Qian and L. Jiang, Numerical analysis on binomial tree methods for a jump-diffusion model,, J. Com. and Appl. Math. 156 (2003), 156 (2003), 23. doi: 10.1016/S0377-0427(02)00903-2.

[15]

W. Wilmott, S. Howison and J. Dewyne, The Mathematics of Financial Derivatives,, Cambridge University Press, (1995). doi: 10.1017/CBO9780511812545.

show all references

References:
[1]

X. Chen and J. Chadam, A mathematical analysis of the optimal exercise boundary for American put options,, SIAM Journal on Mathematical Analysis, 38 (2007), 1613. doi: 10.1137/S0036141003437708.

[2]

X. Chen, J. Chadam, L. Jiang and W. Zheng, Convexity of the exercise boundary of the American put option on a zero dividend asset,, Mathematical Finance, 18 (2008), 185. doi: 10.1111/j.1467-9965.2007.00328.x.

[3]

J. Cox and M. Rubinstein, Option pricing: A simplified approach,, J. Finan. Econ., 7 (1979), 229.

[4]

A. Friedman, Variational Principles and Free Boundary Problems,, John Wiley and Sons, (1982).

[5]

Hall, J., Options, Futures, and Other Derivatives,, Prentice-Hall, (1989).

[6]

B. Hu, L. Jiang and J. Liang, Optimal convergence rate of the explicit finite difference scheme for american options,, J. Comp. Appl. Math., 230 (2009), 583. doi: 10.1016/j.cam.2008.12.018.

[7]

L. Jiang, Mathematical Modeling and Methods for Option Pricing,, World Scientific, (2005). doi: 10.1142/5855.

[8]

L. Jiang and M. Dai, Convergence of the explicit difference scheme and the binomial tree method for American options,, J. Comp. Math., 22 (2004), 371.

[9]

L. Jiang and M. Dai, Convergence of binomial tree methods for European/American options path-depedent options,, SIAM J Numer. Anal., 42 (2004), 1094. doi: 10.1137/S0036142902414220.

[10]

J. Liang, B. Hu, L. Jiang and B. Bian, On the rate of convergence of the binomial tree scheme for American options,, Numerische Mathematik, 107 (2007), 333. doi: 10.1007/s00211-007-0091-0.

[11]

J. Liang, B. Hu and L. Jiang, Optimal convergence rate of the binomial tree scheme for American options with jump diffusion,, SIAM Financial Mathematics, 1 (2010), 30. doi: 10.1137/090746239.

[12]

R. Myneni, The pricing of the American option,, The Annals of Applied Probability, 2 (1992), 1. doi: 10.1214/aoap/1177005768.

[13]

X. Qian, C. Xu, L. Jiang and B. Bian, Convergence of the binomial tree method for American options in jump-diffusion model,, SIAM J. Numer. Anal., 42 (2005), 1899. doi: 10.1137/S0036142902409744.

[14]

C. Xu, X. Qian and L. Jiang, Numerical analysis on binomial tree methods for a jump-diffusion model,, J. Com. and Appl. Math. 156 (2003), 156 (2003), 23. doi: 10.1016/S0377-0427(02)00903-2.

[15]

W. Wilmott, S. Howison and J. Dewyne, The Mathematics of Financial Derivatives,, Cambridge University Press, (1995). doi: 10.1017/CBO9780511812545.

[1]

Wen Li, Song Wang. Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme. Journal of Industrial & Management Optimization, 2013, 9 (2) : 365-389. doi: 10.3934/jimo.2013.9.365

[2]

Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241

[3]

Walter Allegretto, Yanping Lin, Ningning Yan. A posteriori error analysis for FEM of American options. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 957-978. doi: 10.3934/dcdsb.2006.6.957

[4]

Xinfu Chen, Huibin Cheng. Regularity of the free boundary for the American put option. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1751-1759. doi: 10.3934/dcdsb.2012.17.1751

[5]

Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355-363. doi: 10.3934/proc.2013.2013.355

[6]

Donny Citra Lesmana, Song Wang. A numerical scheme for pricing American options with transaction costs under a jump diffusion process. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1793-1813. doi: 10.3934/jimo.2017019

[7]

María Teresa V. Martínez-Palacios, Adrián Hernández-Del-Valle, Ambrosio Ortiz-Ramírez. On the pricing of Asian options with geometric average of American type with stochastic interest rate: A stochastic optimal control approach. Journal of Dynamics & Games, 2019, 6 (1) : 53-64. doi: 10.3934/jdg.2019004

[8]

Xiaoyu Xing, Hailiang Yang. American type geometric step options. Journal of Industrial & Management Optimization, 2013, 9 (3) : 549-560. doi: 10.3934/jimo.2013.9.549

[9]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[10]

Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558

[11]

Yaru Xie, Genqi Xu. The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks & Heterogeneous Media, 2016, 11 (3) : 527-543. doi: 10.3934/nhm.2016008

[12]

Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173

[13]

Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019006

[14]

Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic & Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040

[15]

Wei Qu, Siu-Long Lei, Seak-Weng Vong. A note on the stability of a second order finite difference scheme for space fractional diffusion equations. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 317-325. doi: 10.3934/naco.2014.4.317

[16]

Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644

[17]

Pierangelo Ciurlia. On a general class of free boundary problems for European-style installment options with continuous payment plan. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1205-1224. doi: 10.3934/cpaa.2011.10.1205

[18]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[19]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[20]

Pavol Kútik, Karol Mikula. Diamond--cell finite volume scheme for the Heston model. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 913-931. doi: 10.3934/dcdss.2015.8.913

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]