Citation: |
[1] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.doi: 10.1016/0022-1236(71)90015-2. |
[2] |
H. Flemming and J. Wingender, The biofilm matrix, Nat. Rev. Microbiol., 8 (2010), 623-633.doi: 10.1038/nrmicro2415. |
[3] |
S. J. H. Franks, H. M. Byrne, J. P. King, J. C. E. Underwood and C. E. Lewis, Modelling the early growth of ductal carcinoma in situ of the breast, J. Math. Biol., 47 (2003), 424-452.doi: 10.1007/s00285-003-0214-x. |
[4] |
S. J. H. Franks, H. M. Byrne, J. C. E. Underwood and C. E. Lewis, Biological inferences from a mathematical model of comedo ductal carcinoma in situ of the breast, J. Theoret. Biol., 232 (2005), 523-543.doi: 10.1016/j.jtbi.2004.08.032. |
[5] |
S. J. H. Franks, H. M. Byrne, J. P. King, J. C. E. Underwood and C. E. Lewis, Modelling the growth of ductal carcinoma in situ, Math. Med. Biol., 20 (2003), 277-308. |
[6] |
S. J. H. Franks and J. P. King, Interaction between a uniformly proliferating tumor and its surroundings: Uniform material properties, Math. Med. Biol., 20 (2003), 47-89. |
[7] |
A. Friedman, A free boundary problem for a coupled system of elliptic, hyperbolic, and Stokes equations modeling tumor growth, Interfaces& Free Bound., 8 (2006), 247-261.doi: 10.4171/IFB/142. |
[8] |
A. Friedman, A multiscale tumor model, Interfaces & Free Bound., 10 (2008), 245-262.doi: 10.4171/IFB/188. |
[9] |
A. Friedman, Free boundary value problems associated with multiscale tumor models, Mathematical Modeling of Natural Phenomena, 4 (2009), 134-155.doi: 10.1051/mmnp/20094306. |
[10] |
A. Friedman and B. Hu, Bifurcation from stability to instability for a free boundary problem arising in tumor model, Arch. Rat. Mech. Anal., 180 (2006), 293-330.doi: 10.1007/s00205-005-0408-z. |
[11] |
A. Friedman and B. Hu, Asymptotic stability for a free boundary problem arising in a tumor model, J. Diff. Eqs., 227 (2006), 598-639.doi: 10.1016/j.jde.2005.09.008. |
[12] |
A. Friedman and B. Hu, Bifurcation from stability to instability for a free boundary problem modeling tumor growth by Stokes equation, Math. Anal & Appl., 327 (2007), 643-664.doi: 10.1016/j.jmaa.2006.04.034. |
[13] |
A. Friedman and B. Hu, Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal., 39 (2007), 174-194.doi: 10.1137/060656292. |
[14] |
A. Friedman, B. Hu and C-Y Kao, Cell cycle control at the first restriction point and its effect on tissue growth, J. Math. Biol., 60 (2010), 881-907.doi: 10.1007/s00285-009-0290-7. |
[15] |
A. Friedman, B. Hu and C. Xue, A three dimensional model of wound healing: Analysis and computation, Disc. Cont. Dynam. Syst., 17 (2012), 2691-2712.doi: 10.3934/dcdsb.2012.17.2691. |
[16] |
A. Friedman, B. Hu and C. Xue, On multiphase multicomponent model of biofilm growth, Archive Rat. Mech. Anal., 211 (2014), 257-300.doi: 10.1007/s00205-013-0665-1. |
[17] |
A. Friedman and C. Xue, A mathematical model for chronic wounds, Mathematical Biosciences and Engineering, 8 (2011), 253-261.doi: 10.3934/mbe.2011.8.253. |
[18] |
I. Klapper and J. Dockery, Mathematical description of microbial biofilms, SIAM Rev., 52 (2010), 221-265.doi: 10.1137/080739720. |
[19] |
L. Ma, M. Conover, H. Lu, M. R. Parsek, K. Bayles and D. J. Wozniak, Assembly and development of the Pseudomonas aeruginosa biofilm matrix, PLoS Pathog., 5 (2009), e1000, 354.doi: doi:10.1371/journal.ppat.1000354. |
[20] |
V. Solonnikov, On quasistationary approximation in the problem of motion of a capillary drop, Progress in Nonlinear Differential Equations and Their Applications, 35 (1999), 643-671. |
[21] |
V. Solonnikov, On the quasistationary approximation in the problem of evolution of an isolated liquid mass, Proceedings of International Conference on: Free Boundary Problems, Theory and Applications, 13 (2000), 327-342. Gakkōtosho. |
[22] |
Q. Wang and T. Zhang, Review of mathematical models for biofilms, Solid State Commun., 150 (2010), 1009-1022.doi: 10.1016/j.ssc.2010.01.021. |
[23] |
C. Xue, A. Friedman and C. K. Sen, A mathematical model of ischemic cutaneous wounds, PNAS, 106 (2009), 16782-16787.doi: 10.1073/pnas.0909115106. |