July  2016, 21(5): 1469-1481. doi: 10.3934/dcdsb.2016007

Environmental risks in a diffusive SIS model incorporating use efficiency of the medical resource

1. 

School of Mathematical Science, Yangzhou University, Yangzhou 225002, China

2. 

LAboratory of Mathematical Parallel Systems (LAMPS), Centre for Disease Modeling, Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3

Received  February 2016 Revised  March 2016 Published  April 2016

To capture the impact of spatial heterogeneity of environment and available resource of the public health system on the persistence and extinction of the infectious disease, a simplified spatial SIS reaction-diffusion model with allocation and use efficiency of the medical resource is proposed. A nonlinear space dependent recovery rate is introduced to model impact of available public health resource on the transmission dynamics of the disease. The basic reproduction numbers associated with the diseases in the spatial setting are defined, and then the low, moderate and high risks of the environment are classified. Our results show that the complicated dynamical behaviors of the system are induced by the variation of the use efficiency of medical resources, which suggests that maintaining appropriate number of public health resources and well management are important to control and prevent the temporal-spatial spreading of the infectious disease. The numerical simulations are presented to illustrate the impact of the use efficiency of medical resources on the control of the spreading of infectious disease.
Citation: Jing Ge, Zhigui Lin, Huaiping Zhu. Environmental risks in a diffusive SIS model incorporating use efficiency of the medical resource. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1469-1481. doi: 10.3934/dcdsb.2016007
References:
[1]

L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model,, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1. doi: 10.3934/dcds.2008.21.1. Google Scholar

[2]

R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press,, Oxford, (1991). Google Scholar

[3]

R. Boaden, N. Proudlove and M. Wilson, An exploratory study of bed management,, J. Manag. Med., 13 (2006), 234. doi: 10.1108/02689239910292945. Google Scholar

[4]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology,, Springer, (2011). doi: 10.1007/978-1-4614-1686-9. Google Scholar

[5]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, John Wiley & Sons, (2003). doi: 10.1002/0470871296. Google Scholar

[6]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases. Wiley Series in Mathematical and Computational Biology., John Wiley & Sons, (2000). Google Scholar

[7]

J. Ge, K. I. Kim, Z. G. Lin and H. P. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain,, J. Differential Equations, 259 (2015), 5486. doi: 10.1016/j.jde.2015.06.035. Google Scholar

[8]

P. Hess, Periodic-parabolic Boundary Value Problems and Positivity., Pitman Research Notes in Mathematics, (1991). Google Scholar

[9]

W. Huang, M. Han and K. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease transmission,, Math Biosci Eng., 7 (2010), 51. doi: 10.3934/mbe.2010.7.51. Google Scholar

[10]

S. B. Jiang, L. Lu and L. Y. Du, Development of SARS vaccines and therapeutics is still needed,, Future Virology, 8 (2013), 1. doi: 10.2217/fvl.12.126. Google Scholar

[11]

K. I. Kim and Z. G. Lin, Asymptotic behavior of an SEI epidemic model with diffusion,, Math. Comput. Modelling, 47 (2008), 1314. doi: 10.1016/j.mcm.2007.08.004. Google Scholar

[12]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Amer.Math. Soc, (1968). Google Scholar

[13]

C. C. McCluskey and Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay,, Nonlinear Anal. Real World Appl., 25 (2015), 64. doi: 10.1016/j.nonrwa.2015.05.003. Google Scholar

[14]

R. Peng, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model, I,, J. Differential Equations, 247 (2009), 1096. doi: 10.1016/j.jde.2009.05.002. Google Scholar

[15]

R. Peng and F. Q. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement,, Phys. D, 259 (2013), 8. doi: 10.1016/j.physd.2013.05.006. Google Scholar

[16]

R. Peng and X. Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment,, Nonlinearity, 25 (2012), 1451. doi: 10.1088/0951-7715/25/5/1451. Google Scholar

[17]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations,, Plenum Press, (1992). Google Scholar

[18]

C. H. Shan and H. P. Zhu, Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds,, J. Differential Equations, 257 (2014), 1662. doi: 10.1016/j.jde.2014.05.030. Google Scholar

[19]

C. H. Shan, Y. F. Yi and H. P. Zhu, Nilpotent singularities and dynamics in an SIR type of compartmental model with hospital resources,, J. of Differential Equations, 260 (2016), 4339. doi: 10.1016/j.jde.2015.11.009. Google Scholar

[20]

Q. L. Tang, J. Ge and Z. G. Lin, An SEI-SI avian-human influenza model with diffusion and nonlocal delay,, Appl. Math. Comput., 247 (2014), 753. doi: 10.1016/j.amc.2014.09.042. Google Scholar

[21]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[22]

H. Wan and H. Zhu, The backward bifurcation in compartmental models for West Nile virus,, Math. Biosci., 227 (2010), 20. doi: 10.1016/j.mbs.2010.05.006. Google Scholar

[23]

J. Zhou and H. W. Hethcote, Population size dependent incidence in models for diseases without immunity,, J. Math. Bio., 32 (1994), 809. doi: 10.1007/BF00168799. Google Scholar

[24]

, World Health Organization,, World Health Statistics 2005-2011., (): 2005. Google Scholar

[25]

"Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003"., World Health Organization (WHO)., , (). Google Scholar

[26]

, href=, (). Google Scholar

show all references

References:
[1]

L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model,, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1. doi: 10.3934/dcds.2008.21.1. Google Scholar

[2]

R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press,, Oxford, (1991). Google Scholar

[3]

R. Boaden, N. Proudlove and M. Wilson, An exploratory study of bed management,, J. Manag. Med., 13 (2006), 234. doi: 10.1108/02689239910292945. Google Scholar

[4]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology,, Springer, (2011). doi: 10.1007/978-1-4614-1686-9. Google Scholar

[5]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, John Wiley & Sons, (2003). doi: 10.1002/0470871296. Google Scholar

[6]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases. Wiley Series in Mathematical and Computational Biology., John Wiley & Sons, (2000). Google Scholar

[7]

J. Ge, K. I. Kim, Z. G. Lin and H. P. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain,, J. Differential Equations, 259 (2015), 5486. doi: 10.1016/j.jde.2015.06.035. Google Scholar

[8]

P. Hess, Periodic-parabolic Boundary Value Problems and Positivity., Pitman Research Notes in Mathematics, (1991). Google Scholar

[9]

W. Huang, M. Han and K. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease transmission,, Math Biosci Eng., 7 (2010), 51. doi: 10.3934/mbe.2010.7.51. Google Scholar

[10]

S. B. Jiang, L. Lu and L. Y. Du, Development of SARS vaccines and therapeutics is still needed,, Future Virology, 8 (2013), 1. doi: 10.2217/fvl.12.126. Google Scholar

[11]

K. I. Kim and Z. G. Lin, Asymptotic behavior of an SEI epidemic model with diffusion,, Math. Comput. Modelling, 47 (2008), 1314. doi: 10.1016/j.mcm.2007.08.004. Google Scholar

[12]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Amer.Math. Soc, (1968). Google Scholar

[13]

C. C. McCluskey and Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay,, Nonlinear Anal. Real World Appl., 25 (2015), 64. doi: 10.1016/j.nonrwa.2015.05.003. Google Scholar

[14]

R. Peng, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model, I,, J. Differential Equations, 247 (2009), 1096. doi: 10.1016/j.jde.2009.05.002. Google Scholar

[15]

R. Peng and F. Q. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement,, Phys. D, 259 (2013), 8. doi: 10.1016/j.physd.2013.05.006. Google Scholar

[16]

R. Peng and X. Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment,, Nonlinearity, 25 (2012), 1451. doi: 10.1088/0951-7715/25/5/1451. Google Scholar

[17]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations,, Plenum Press, (1992). Google Scholar

[18]

C. H. Shan and H. P. Zhu, Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds,, J. Differential Equations, 257 (2014), 1662. doi: 10.1016/j.jde.2014.05.030. Google Scholar

[19]

C. H. Shan, Y. F. Yi and H. P. Zhu, Nilpotent singularities and dynamics in an SIR type of compartmental model with hospital resources,, J. of Differential Equations, 260 (2016), 4339. doi: 10.1016/j.jde.2015.11.009. Google Scholar

[20]

Q. L. Tang, J. Ge and Z. G. Lin, An SEI-SI avian-human influenza model with diffusion and nonlocal delay,, Appl. Math. Comput., 247 (2014), 753. doi: 10.1016/j.amc.2014.09.042. Google Scholar

[21]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[22]

H. Wan and H. Zhu, The backward bifurcation in compartmental models for West Nile virus,, Math. Biosci., 227 (2010), 20. doi: 10.1016/j.mbs.2010.05.006. Google Scholar

[23]

J. Zhou and H. W. Hethcote, Population size dependent incidence in models for diseases without immunity,, J. Math. Bio., 32 (1994), 809. doi: 10.1007/BF00168799. Google Scholar

[24]

, World Health Organization,, World Health Statistics 2005-2011., (): 2005. Google Scholar

[25]

"Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003"., World Health Organization (WHO)., , (). Google Scholar

[26]

, href=, (). Google Scholar

[1]

Jing Ge, Ling Lin, Lai Zhang. A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2763-2776. doi: 10.3934/dcdsb.2017134

[2]

Chengxia Lei, Fujun Li, Jiang Liu. Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4499-4517. doi: 10.3934/dcdsb.2018173

[3]

Danhua Jiang, Zhi-Cheng Wang, Liang Zhang. A reaction-diffusion-advection SIS epidemic model in a spatially-temporally heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4557-4578. doi: 10.3934/dcdsb.2018176

[4]

Chengxia Lei, Jie Xiong, Xinhui Zhou. Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2019173

[5]

Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291

[6]

Shouying Huang, Jifa Jiang. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences & Engineering, 2016, 13 (4) : 723-739. doi: 10.3934/mbe.2016016

[7]

Claude-Michel Brauner, Danaelle Jolly, Luca Lorenzi, Rodolphe Thiebaut. Heterogeneous viral environment in a HIV spatial model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 545-572. doi: 10.3934/dcdsb.2011.15.545

[8]

Wonlyul Ko, Inkyung Ahn, Shengqiang Liu. Asymptotical behaviors of a general diffusive consumer-resource model with maturation delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1715-1733. doi: 10.3934/dcdsb.2015.20.1715

[9]

Semu Mitiku Kassa. Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Mathematical Biosciences & Engineering, 2018, 15 (1) : 255-273. doi: 10.3934/mbe.2018011

[10]

Mariusz Bodzioch, Marcin Choiński, Urszula Foryś. SIS criss-cross model of tuberculosis in heterogeneous population. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2169-2188. doi: 10.3934/dcdsb.2019089

[11]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial & Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[12]

Irina Kareva, Faina Berezovkaya, Georgy Karev. Mixed strategies and natural selection in resource allocation. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1561-1586. doi: 10.3934/mbe.2013.10.1561

[13]

Yongli Cai, Weiming Wang. Dynamics of a parasite-host epidemiological model in spatial heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 989-1013. doi: 10.3934/dcdsb.2015.20.989

[14]

Yaying Dong, Shanbing Li, Yanling Li. Effects of dispersal for a predator-prey model in a heterogeneous environment. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2511-2528. doi: 10.3934/cpaa.2019114

[15]

Abdelrazig K. Tarboush, Jing Ge, Zhigui Lin. Coexistence of a cross-diffusive West Nile virus model in a heterogenous environment. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1479-1494. doi: 10.3934/mbe.2018068

[16]

Ali Gharouni, Lin Wang. Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation. Mathematical Biosciences & Engineering, 2016, 13 (5) : 969-980. doi: 10.3934/mbe.2016025

[17]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

[18]

Jesús Ildefonso Díaz, L. Tello. On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 253-262. doi: 10.3934/dcdss.2008.1.253

[19]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[20]

Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]