• Previous Article
    Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities
  • DCDS-B Home
  • This Issue
  • Next Article
    Environmental risks in a diffusive SIS model incorporating use efficiency of the medical resource
July  2016, 21(5): 1483-1505. doi: 10.3934/dcdsb.2016008

Optimal switching at Poisson random intervention times

1. 

Department of Mathematics, King's College London, Strand, London, WC2R 2LS, United Kingdom

2. 

Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, United Kingdom

Received  October 2013 Revised  March 2014 Published  April 2016

This paper introduces a new class of optimal switching problems, where the player is allowed to switch at a sequence of exogenous Poisson arrival times, and the underlying switching system is governed by an infinite horizon backward stochastic differential equation system. The value function and the optimal switching strategy are characterized by the solution of the underlying switching system. In a Markovian setting, the paper gives a complete description of the structure of switching regions by means of the comparison principle.
Citation: Gechun Liang, Wei Wei. Optimal switching at Poisson random intervention times. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1483-1505. doi: 10.3934/dcdsb.2016008
References:
[1]

E. Bayraktar and M. Egami, On the one-dimensional optimal switching problem,, Mathematics of Operations Research, 35 (2010), 140. doi: 10.1287/moor.1090.0432. Google Scholar

[2]

E. Bayraktar and M. Ludkovski, A sequential tracking of a hidden Markov chain using point process observations,, Stochastic Processes and Their Applications, 119 (2009), 1792. doi: 10.1016/j.spa.2008.09.003. Google Scholar

[3]

A. Bensoussan and J. L. Lions, Impulse Control and Quasivariational Inequalities,, Gauthier-Villars, (1984). Google Scholar

[4]

K. Brekke and B. Oksendal, Optimal switching in an economic activity under uncertainty,, SIAM J. Control Optim., 32 (1994), 1021. doi: 10.1137/S0363012992229835. Google Scholar

[5]

P. Briand and H. Ying, Stability of BSDEs with random terminal time and homogenization of semilinear elliptic PDEs,, Journal of Functional Analysis, 155 (1998), 455. doi: 10.1006/jfan.1997.3229. Google Scholar

[6]

R. Carmona and M. Ludkovski, Pricing asset scheduling flexibility using optimal switching,, Applied Mathematical Finance, 15 (2008), 405. doi: 10.1080/13504860802170507. Google Scholar

[7]

M. Dai, Q. Zhang and Q. Zhu, Trend following trading under a regime switching model,, SIAM Journal on Financial Mathematics, 1 (2010), 780. doi: 10.1137/090770552. Google Scholar

[8]

R. W. R. Darling and E. Pardoux, Backwards SDE with random terminal time and applications to semilinear elliptic PDE,, The Annals of Probability, 25 (1997), 1135. doi: 10.1214/aop/1024404508. Google Scholar

[9]

K. Duckworth and M. Zervos, A model for investment decisions with switching costs,, The Annals of Applied probability, 11 (2001), 239. doi: 10.1214/aoap/998926992. Google Scholar

[10]

P. Dupuis and H. Wang, Optimal stopping with random intervention times,, Adv. in Appl. Probab., 34 (2002), 141. doi: 10.1239/aap/1019160954. Google Scholar

[11]

N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance,, Mathematical Finance, 7 (1997), 1. doi: 10.1111/1467-9965.00022. Google Scholar

[12]

S. Hamadène and M. Jeanblanc, On the starting and stopping problem: Application in reversible investments,, Math. Oper. Res., 32 (2007), 182. doi: 10.1287/moor.1060.0228. Google Scholar

[13]

S. Hamadène and J. Zhang, Switching problem and related system of reflected backward SDEs,, Stochastic Processes and Their Applications, 120 (2010), 403. doi: 10.1016/j.spa.2010.01.003. Google Scholar

[14]

Y. Hu and S. Tang, Multi-dimensional BSDE with oblique reflection and optimal switching,, Probab. Theory Related Fields, 147 (2010), 89. doi: 10.1007/s00440-009-0202-1. Google Scholar

[15]

J. Lempa, Optimal stopping with information constraint,, Applied Mathematics and Optimization, 66 (2012), 147. doi: 10.1007/s00245-012-9166-0. Google Scholar

[16]

G. Liang, Stochastic control representations for penalized backward stochastic differential equations,, SIAM Journal on Control and Optimization, 53 (2015), 1440. doi: 10.1137/130942681. Google Scholar

[17]

G. Liang, E. Lütkebohmert and W. Wei, Funding liquidity, debt tenor structure, and creditor's belief: An exogenous dynamic debt run model,, Mathematics and Financial Economics, 9 (2015), 271. doi: 10.1007/s11579-015-0144-6. Google Scholar

[18]

V. Ly Vath and H. Pham, Explicit solution to an optimal switching problem in the two-regime case,, SIAM Journal on Control and Optimization, 46 (2007), 395. doi: 10.1137/050638783. Google Scholar

[19]

J. Ma and J. Yong, Forward-backward Stochastic Differential Equations and Their Applications,, Lecture Notes in Mathematics, (1999). Google Scholar

[20]

É. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation,, Systems & Control Letters, 14 (1990), 55. doi: 10.1016/0167-6911(90)90082-6. Google Scholar

[21]

H. Pham, Continuous-time Stochastic Control and Optimization with Financial Applications,, Springer-Verlag, (2009). doi: 10.1007/978-3-540-89500-8. Google Scholar

[22]

H. Pham, V. Ly Vath and X. Y. Zhou, Optimal switching over multiple regimes,, SIAM Journal on Control and Optimization, 48 (2009), 2217. doi: 10.1137/070709372. Google Scholar

[23]

A. Porchet, N. Touzi and X. Warin, Valuation of power plants by utility indifference and numerical computation,, Math. Methods Oper. Res., 70 (2009), 47. doi: 10.1007/s00186-008-0231-z. Google Scholar

[24]

S. Tang and J. Yong, Finite horizon stochastic optimal switching and impulse controls with a viscosity solution approach,, Stochastics: An International Journal of Probability and Stochastic Processes, 45 (1993), 145. doi: 10.1080/17442509308833860. Google Scholar

[25]

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations,, Springer-Verlag, (1999). doi: 10.1007/978-1-4612-1466-3. Google Scholar

show all references

References:
[1]

E. Bayraktar and M. Egami, On the one-dimensional optimal switching problem,, Mathematics of Operations Research, 35 (2010), 140. doi: 10.1287/moor.1090.0432. Google Scholar

[2]

E. Bayraktar and M. Ludkovski, A sequential tracking of a hidden Markov chain using point process observations,, Stochastic Processes and Their Applications, 119 (2009), 1792. doi: 10.1016/j.spa.2008.09.003. Google Scholar

[3]

A. Bensoussan and J. L. Lions, Impulse Control and Quasivariational Inequalities,, Gauthier-Villars, (1984). Google Scholar

[4]

K. Brekke and B. Oksendal, Optimal switching in an economic activity under uncertainty,, SIAM J. Control Optim., 32 (1994), 1021. doi: 10.1137/S0363012992229835. Google Scholar

[5]

P. Briand and H. Ying, Stability of BSDEs with random terminal time and homogenization of semilinear elliptic PDEs,, Journal of Functional Analysis, 155 (1998), 455. doi: 10.1006/jfan.1997.3229. Google Scholar

[6]

R. Carmona and M. Ludkovski, Pricing asset scheduling flexibility using optimal switching,, Applied Mathematical Finance, 15 (2008), 405. doi: 10.1080/13504860802170507. Google Scholar

[7]

M. Dai, Q. Zhang and Q. Zhu, Trend following trading under a regime switching model,, SIAM Journal on Financial Mathematics, 1 (2010), 780. doi: 10.1137/090770552. Google Scholar

[8]

R. W. R. Darling and E. Pardoux, Backwards SDE with random terminal time and applications to semilinear elliptic PDE,, The Annals of Probability, 25 (1997), 1135. doi: 10.1214/aop/1024404508. Google Scholar

[9]

K. Duckworth and M. Zervos, A model for investment decisions with switching costs,, The Annals of Applied probability, 11 (2001), 239. doi: 10.1214/aoap/998926992. Google Scholar

[10]

P. Dupuis and H. Wang, Optimal stopping with random intervention times,, Adv. in Appl. Probab., 34 (2002), 141. doi: 10.1239/aap/1019160954. Google Scholar

[11]

N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance,, Mathematical Finance, 7 (1997), 1. doi: 10.1111/1467-9965.00022. Google Scholar

[12]

S. Hamadène and M. Jeanblanc, On the starting and stopping problem: Application in reversible investments,, Math. Oper. Res., 32 (2007), 182. doi: 10.1287/moor.1060.0228. Google Scholar

[13]

S. Hamadène and J. Zhang, Switching problem and related system of reflected backward SDEs,, Stochastic Processes and Their Applications, 120 (2010), 403. doi: 10.1016/j.spa.2010.01.003. Google Scholar

[14]

Y. Hu and S. Tang, Multi-dimensional BSDE with oblique reflection and optimal switching,, Probab. Theory Related Fields, 147 (2010), 89. doi: 10.1007/s00440-009-0202-1. Google Scholar

[15]

J. Lempa, Optimal stopping with information constraint,, Applied Mathematics and Optimization, 66 (2012), 147. doi: 10.1007/s00245-012-9166-0. Google Scholar

[16]

G. Liang, Stochastic control representations for penalized backward stochastic differential equations,, SIAM Journal on Control and Optimization, 53 (2015), 1440. doi: 10.1137/130942681. Google Scholar

[17]

G. Liang, E. Lütkebohmert and W. Wei, Funding liquidity, debt tenor structure, and creditor's belief: An exogenous dynamic debt run model,, Mathematics and Financial Economics, 9 (2015), 271. doi: 10.1007/s11579-015-0144-6. Google Scholar

[18]

V. Ly Vath and H. Pham, Explicit solution to an optimal switching problem in the two-regime case,, SIAM Journal on Control and Optimization, 46 (2007), 395. doi: 10.1137/050638783. Google Scholar

[19]

J. Ma and J. Yong, Forward-backward Stochastic Differential Equations and Their Applications,, Lecture Notes in Mathematics, (1999). Google Scholar

[20]

É. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation,, Systems & Control Letters, 14 (1990), 55. doi: 10.1016/0167-6911(90)90082-6. Google Scholar

[21]

H. Pham, Continuous-time Stochastic Control and Optimization with Financial Applications,, Springer-Verlag, (2009). doi: 10.1007/978-3-540-89500-8. Google Scholar

[22]

H. Pham, V. Ly Vath and X. Y. Zhou, Optimal switching over multiple regimes,, SIAM Journal on Control and Optimization, 48 (2009), 2217. doi: 10.1137/070709372. Google Scholar

[23]

A. Porchet, N. Touzi and X. Warin, Valuation of power plants by utility indifference and numerical computation,, Math. Methods Oper. Res., 70 (2009), 47. doi: 10.1007/s00186-008-0231-z. Google Scholar

[24]

S. Tang and J. Yong, Finite horizon stochastic optimal switching and impulse controls with a viscosity solution approach,, Stochastics: An International Journal of Probability and Stochastic Processes, 45 (1993), 145. doi: 10.1080/17442509308833860. Google Scholar

[25]

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations,, Springer-Verlag, (1999). doi: 10.1007/978-1-4612-1466-3. Google Scholar

[1]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

[2]

Fabio Bagagiolo. Optimal control of finite horizon type for a multidimensional delayed switching system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 239-264. doi: 10.3934/dcdsb.2005.5.239

[3]

Fabio Bagagiolo. An infinite horizon optimal control problem for some switching systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 443-462. doi: 10.3934/dcdsb.2001.1.443

[4]

Xiaoshan Chen, Xun Li, Fahuai Yi. Optimal stopping investment with non-smooth utility over an infinite time horizon. Journal of Industrial & Management Optimization, 2019, 15 (1) : 81-96. doi: 10.3934/jimo.2018033

[5]

Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations & Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723

[6]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[7]

Wenqing Bao, Xianyi Wu, Xian Zhou. Optimal stopping problems with restricted stopping times. Journal of Industrial & Management Optimization, 2017, 13 (1) : 399-411. doi: 10.3934/jimo.2016023

[8]

Naïla Hayek. Infinite-horizon multiobjective optimal control problems for bounded processes. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1121-1141. doi: 10.3934/dcdss.2018064

[9]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[10]

Jan-Hendrik Webert, Philip E. Gill, Sven-Joachim Kimmerle, Matthias Gerdts. A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1259-1282. doi: 10.3934/dcdss.2018071

[11]

Jitka Machalová, Horymír Netuka. Optimal control of system governed by the Gao beam equation. Conference Publications, 2015, 2015 (special) : 783-792. doi: 10.3934/proc.2015.0783

[12]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[13]

Linlin Tian, Xiaoyi Zhang, Yizhou Bai. Optimal dividend of compound poisson process under a stochastic interest rate. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019047

[14]

Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control & Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517

[15]

Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control & Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036

[16]

Renjun Duan, Tong Yang, Changjiang Zhu. Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 253-277. doi: 10.3934/dcds.2006.16.253

[17]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic & Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[18]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming formulations of deterministic infinite horizon optimal control problems in discrete time. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3821-3838. doi: 10.3934/dcdsb.2017192

[19]

Alexander Tarasyev, Anastasia Usova. Application of a nonlinear stabilizer for localizing search of optimal trajectories in control problems with infinite horizon. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 389-406. doi: 10.3934/naco.2013.3.389

[20]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]