July  2016, 21(5): 1603-1615. doi: 10.3934/dcdsb.2016013

Interest rates risk-premium and shape of the yield curve

1. 

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025, United States

Received  April 2015 Revised  December 2015 Published  April 2016

We apply the general theory of pricing in incomplete markets, due to the author, on the problem of pricing bonds for the Hull-White stochastic interest rate model. As pricing in incomplete markets involves more market parameters than the classical theory, and as the derived risk premium is time-dependent, the proposed methodology might offer a better way for replicating different shapes of the empirically observed yield curves. For example, the so-called humped yield curve can be obtained from a normal yield curve by only increasing the investors risk aversion.
Citation: Srdjan Stojanovic. Interest rates risk-premium and shape of the yield curve. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1603-1615. doi: 10.3934/dcdsb.2016013
References:
[1]

D. Becherer, Utility-indifference hedging and valuation via reaction-diffusion systems, Proc. R. Soc. Lond. A, 460 (2004), 27-51. doi: 10.1098/rspa.2003.1234.

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Political Econ., 81 (1973), 637-654. doi: 10.1086/260062.

[3]

D. Brigo and F. Mercurio, Interest Rate Models Theory and Practice, Springer, Berlin, 2001. doi: 10.1007/978-3-662-04553-4.

[4]

M. Davis, V. G. Panas and T. Zariphopoulou, European option pricing with transaction costs, SIAM Journal on Control and Optimization, 31 (1993), 470-493. doi: 10.1137/0331022.

[5]

A. Friedman, Stochastic Differential Equations, Vol 1 & 2, Academic Press, New York, 1975.

[6]

S. D. Hodges and A. Neuberger, Optimal replication of contingent claims under transaction costs, Review of Futures Markets, 8 (1989), 222-239.

[7]

J. Hull and A. White, Pricing interest-rate derivative securities, The Review of Financial Studies, 3 (1990), 573-592. doi: 10.1093/rfs/3.4.573.

[8]

L. Jiang, Mathematical Modeling and Methods of Option Pricing, World Scientific Publishing, Singapore, 2005. doi: 10.1142/5855.

[9]

J. Kallsen, Utility-based derivative pricing in incomplete markets, Mathematical Finance-Bachelier Congress 2000, H. Geman, D. Madan, S. R. Pliska, T. Vorst (Eds.), Springer, Berlin, 2002, 313-338.

[10]

Z. Kang and S. Stojanovic, Interest rate risk premium and equity valuation, Journal of Systems Science and Complexity, 23 (2010), 484-498. doi: 10.1007/s11424-010-0142-y.

[11]

G. Liang and L. Jiang, A modified structural model for credit risk, IMA Journal of Management Mathematics, 23 (2012), 147-170. doi: 10.1093/imaman/dpr004.

[12]

R. C. Merton, Theory of rational option pricing, Bell Journal of Economics and Management Science, 4 (1973), 141-183. doi: 10.2307/3003143.

[13]

R. C. Merton, Continuous-Time Finance, Wiley-Blackwell, 1990.

[14]

M. Musiela and T. Zariphopoulou, An example of indifference prices under exponential preferences, Finance and Stochastics, 8 (2004), 229-239. doi: 10.1007/s00780-003-0112-5.

[15]

R. Rouge and N. El Karoui, Pricing via utility maximization and entropy, Mathematical Finance, 10 (2000), 259-276. doi: 10.1111/1467-9965.00093.

[16]

S. Stojanovic, Computational Financial Mathematics using MATHEMATICA®, Birkhauser, Boston, 2003. doi: 10.1007/978-1-4612-0043-7.

[17]

S. Stojanovic, Risk premium and fair option prices under stochastic volatility: The HARA solution, C. R. Acad. Sci. Paris Ser. I, 340 (2005), 551-556. doi: 10.1016/j.crma.2004.11.002.

[18]

S. Stojanovic, Stochastic Volatility & Risk Premium, Lecture Notes, GARP, New York, 2005.

[19]

S. Stojanovic, Pricing and hedging of multi type contracts under multidimensional risks in incomplete markets modeled by general Itô SDE systems, Asia Pacific Financial Markets, 13 (2006), 345-372.

[20]

S. Stojanovic, Advanced Financial Engineering for Interest Rates, Equity, and FX, Lecture Notes, GARP, New York, 2007.

[21]

S. Stojanovic, Any-utility neutral and indifference pricing and hedging, Risk and Decision Analysis, 4 (2013), 103-118.

[22]

S. Stojanovic, Neutral and Indifference Portfolio Pricing, Hedging and Investing, Springer, New York, 2011.

[23]

O. Vasicek, An equilibrium characterization of the term structure, Journal of Financial Economics, 5 (1977), 177-188. doi: 10.1002/9781119186229.ch6.

show all references

References:
[1]

D. Becherer, Utility-indifference hedging and valuation via reaction-diffusion systems, Proc. R. Soc. Lond. A, 460 (2004), 27-51. doi: 10.1098/rspa.2003.1234.

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Political Econ., 81 (1973), 637-654. doi: 10.1086/260062.

[3]

D. Brigo and F. Mercurio, Interest Rate Models Theory and Practice, Springer, Berlin, 2001. doi: 10.1007/978-3-662-04553-4.

[4]

M. Davis, V. G. Panas and T. Zariphopoulou, European option pricing with transaction costs, SIAM Journal on Control and Optimization, 31 (1993), 470-493. doi: 10.1137/0331022.

[5]

A. Friedman, Stochastic Differential Equations, Vol 1 & 2, Academic Press, New York, 1975.

[6]

S. D. Hodges and A. Neuberger, Optimal replication of contingent claims under transaction costs, Review of Futures Markets, 8 (1989), 222-239.

[7]

J. Hull and A. White, Pricing interest-rate derivative securities, The Review of Financial Studies, 3 (1990), 573-592. doi: 10.1093/rfs/3.4.573.

[8]

L. Jiang, Mathematical Modeling and Methods of Option Pricing, World Scientific Publishing, Singapore, 2005. doi: 10.1142/5855.

[9]

J. Kallsen, Utility-based derivative pricing in incomplete markets, Mathematical Finance-Bachelier Congress 2000, H. Geman, D. Madan, S. R. Pliska, T. Vorst (Eds.), Springer, Berlin, 2002, 313-338.

[10]

Z. Kang and S. Stojanovic, Interest rate risk premium and equity valuation, Journal of Systems Science and Complexity, 23 (2010), 484-498. doi: 10.1007/s11424-010-0142-y.

[11]

G. Liang and L. Jiang, A modified structural model for credit risk, IMA Journal of Management Mathematics, 23 (2012), 147-170. doi: 10.1093/imaman/dpr004.

[12]

R. C. Merton, Theory of rational option pricing, Bell Journal of Economics and Management Science, 4 (1973), 141-183. doi: 10.2307/3003143.

[13]

R. C. Merton, Continuous-Time Finance, Wiley-Blackwell, 1990.

[14]

M. Musiela and T. Zariphopoulou, An example of indifference prices under exponential preferences, Finance and Stochastics, 8 (2004), 229-239. doi: 10.1007/s00780-003-0112-5.

[15]

R. Rouge and N. El Karoui, Pricing via utility maximization and entropy, Mathematical Finance, 10 (2000), 259-276. doi: 10.1111/1467-9965.00093.

[16]

S. Stojanovic, Computational Financial Mathematics using MATHEMATICA®, Birkhauser, Boston, 2003. doi: 10.1007/978-1-4612-0043-7.

[17]

S. Stojanovic, Risk premium and fair option prices under stochastic volatility: The HARA solution, C. R. Acad. Sci. Paris Ser. I, 340 (2005), 551-556. doi: 10.1016/j.crma.2004.11.002.

[18]

S. Stojanovic, Stochastic Volatility & Risk Premium, Lecture Notes, GARP, New York, 2005.

[19]

S. Stojanovic, Pricing and hedging of multi type contracts under multidimensional risks in incomplete markets modeled by general Itô SDE systems, Asia Pacific Financial Markets, 13 (2006), 345-372.

[20]

S. Stojanovic, Advanced Financial Engineering for Interest Rates, Equity, and FX, Lecture Notes, GARP, New York, 2007.

[21]

S. Stojanovic, Any-utility neutral and indifference pricing and hedging, Risk and Decision Analysis, 4 (2013), 103-118.

[22]

S. Stojanovic, Neutral and Indifference Portfolio Pricing, Hedging and Investing, Springer, New York, 2011.

[23]

O. Vasicek, An equilibrium characterization of the term structure, Journal of Financial Economics, 5 (1977), 177-188. doi: 10.1002/9781119186229.ch6.

[1]

María Teresa V. Martínez-Palacios, Adrián Hernández-Del-Valle, Ambrosio Ortiz-Ramírez. On the pricing of Asian options with geometric average of American type with stochastic interest rate: A stochastic optimal control approach. Journal of Dynamics and Games, 2019, 6 (1) : 53-64. doi: 10.3934/jdg.2019004

[2]

Cuilian You, Le Bo. Pricing of European call option under fuzzy interest rate. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022033

[3]

Linlin Tian, Xiaoyi Zhang, Yizhou Bai. Optimal dividend of compound poisson process under a stochastic interest rate. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2141-2157. doi: 10.3934/jimo.2019047

[4]

Dingjun Yao, Kun Fan. Optimal risk control and dividend strategies in the presence of two reinsurers: Variance premium principle. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1055-1083. doi: 10.3934/jimo.2017090

[5]

Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial and Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165

[6]

Xin Jiang, Kam Chuen Yuen, Mi Chen. Optimal investment and reinsurance with premium control. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2781-2797. doi: 10.3934/jimo.2019080

[7]

Roya Soltani, Seyed Jafar Sadjadi, Mona Rahnama. Artificial intelligence combined with nonlinear optimization techniques and their application for yield curve optimization. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1701-1721. doi: 10.3934/jimo.2017014

[8]

Qigang Yuan, Yutong Sun, Jingli Ren. How interest rate influences a business cycle model. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3231-3251. doi: 10.3934/dcdss.2020190

[9]

Haixiang Yao, Zhongfei Li, Yongzeng Lai. Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate. Journal of Industrial and Management Optimization, 2016, 12 (1) : 187-209. doi: 10.3934/jimo.2016.12.187

[10]

Tien-Yu Lin, Ming-Te Chen, Kuo-Lung Hou. An inventory model for items with imperfect quality and quantity discounts under adjusted screening rate and earned interest. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1333-1347. doi: 10.3934/jimo.2016.12.1333

[11]

Yan Zhang, Yonghong Wu, Benchawan Wiwatanapataphee, Francisca Angkola. Asset liability management for an ordinary insurance system with proportional reinsurance in a CIR stochastic interest rate and Heston stochastic volatility framework. Journal of Industrial and Management Optimization, 2020, 16 (1) : 71-101. doi: 10.3934/jimo.2018141

[12]

Shou Chen, Chen Xiao. Financial risk contagion and optimal control. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022070

[13]

Engel John C Dela Vega, Robert J Elliott. Conditional coherent risk measures and regime-switching conic pricing. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 267-300. doi: 10.3934/puqr.2021014

[14]

Lihua Bian, Zhongfei Li, Haixiang Yao. Time-consistent strategy for a multi-period mean-variance asset-liability management problem with stochastic interest rate. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1383-1410. doi: 10.3934/jimo.2020026

[15]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial and Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[16]

Tao Chen, Wei Liu, Tao Tan, Lijun Wu, Yijun Hu. Optimal reinsurance with default risk: A reinsurer's perspective. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2971-2987. doi: 10.3934/jimo.2020103

[17]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[18]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control and Related Fields, 2022, 12 (1) : 201-223. doi: 10.3934/mcrf.2021007

[19]

Bei Hu, Lishang Jiang, Jin Liang, Wei Wei. A fully non-linear PDE problem from pricing CDS with counterparty risk. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2001-2016. doi: 10.3934/dcdsb.2012.17.2001

[20]

Kegui Chen, Xinyu Wang, Min Huang, Wai-Ki Ching. Compensation plan, pricing and production decisions with inventory-dependent salvage value, and asymmetric risk-averse sales agent. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1397-1422. doi: 10.3934/jimo.2018013

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (131)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]