-
Previous Article
Local strong solutions to the compressible viscous magnetohydrodynamic equations
- DCDS-B Home
- This Issue
-
Next Article
A generalization of the Blaschke-Lebesgue problem to a kind of convex domains
Interest rates risk-premium and shape of the yield curve
1. | Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025, United States |
References:
[1] |
D. Becherer, Utility-indifference hedging and valuation via reaction-diffusion systems, Proc. R. Soc. Lond. A, 460 (2004), 27-51.
doi: 10.1098/rspa.2003.1234. |
[2] |
F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Political Econ., 81 (1973), 637-654.
doi: 10.1086/260062. |
[3] |
D. Brigo and F. Mercurio, Interest Rate Models Theory and Practice, Springer, Berlin, 2001.
doi: 10.1007/978-3-662-04553-4. |
[4] |
M. Davis, V. G. Panas and T. Zariphopoulou, European option pricing with transaction costs, SIAM Journal on Control and Optimization, 31 (1993), 470-493.
doi: 10.1137/0331022. |
[5] |
A. Friedman, Stochastic Differential Equations, Vol 1 & 2, Academic Press, New York, 1975. |
[6] |
S. D. Hodges and A. Neuberger, Optimal replication of contingent claims under transaction costs, Review of Futures Markets, 8 (1989), 222-239. |
[7] |
J. Hull and A. White, Pricing interest-rate derivative securities, The Review of Financial Studies, 3 (1990), 573-592.
doi: 10.1093/rfs/3.4.573. |
[8] |
L. Jiang, Mathematical Modeling and Methods of Option Pricing, World Scientific Publishing, Singapore, 2005.
doi: 10.1142/5855. |
[9] |
J. Kallsen, Utility-based derivative pricing in incomplete markets, Mathematical Finance-Bachelier Congress 2000, H. Geman, D. Madan, S. R. Pliska, T. Vorst (Eds.), Springer, Berlin, 2002, 313-338. |
[10] |
Z. Kang and S. Stojanovic, Interest rate risk premium and equity valuation, Journal of Systems Science and Complexity, 23 (2010), 484-498.
doi: 10.1007/s11424-010-0142-y. |
[11] |
G. Liang and L. Jiang, A modified structural model for credit risk, IMA Journal of Management Mathematics, 23 (2012), 147-170.
doi: 10.1093/imaman/dpr004. |
[12] |
R. C. Merton, Theory of rational option pricing, Bell Journal of Economics and Management Science, 4 (1973), 141-183.
doi: 10.2307/3003143. |
[13] |
R. C. Merton, Continuous-Time Finance, Wiley-Blackwell, 1990. |
[14] |
M. Musiela and T. Zariphopoulou, An example of indifference prices under exponential preferences, Finance and Stochastics, 8 (2004), 229-239.
doi: 10.1007/s00780-003-0112-5. |
[15] |
R. Rouge and N. El Karoui, Pricing via utility maximization and entropy, Mathematical Finance, 10 (2000), 259-276.
doi: 10.1111/1467-9965.00093. |
[16] |
S. Stojanovic, Computational Financial Mathematics using MATHEMATICA®, Birkhauser, Boston, 2003.
doi: 10.1007/978-1-4612-0043-7. |
[17] |
S. Stojanovic, Risk premium and fair option prices under stochastic volatility: The HARA solution, C. R. Acad. Sci. Paris Ser. I, 340 (2005), 551-556.
doi: 10.1016/j.crma.2004.11.002. |
[18] |
S. Stojanovic, Stochastic Volatility & Risk Premium, Lecture Notes, GARP, New York, 2005. |
[19] |
S. Stojanovic, Pricing and hedging of multi type contracts under multidimensional risks in incomplete markets modeled by general Itô SDE systems, Asia Pacific Financial Markets, 13 (2006), 345-372. |
[20] |
S. Stojanovic, Advanced Financial Engineering for Interest Rates, Equity, and FX, Lecture Notes, GARP, New York, 2007. |
[21] |
S. Stojanovic, Any-utility neutral and indifference pricing and hedging, Risk and Decision Analysis, 4 (2013), 103-118. |
[22] |
S. Stojanovic, Neutral and Indifference Portfolio Pricing, Hedging and Investing, Springer, New York, 2011. |
[23] |
O. Vasicek, An equilibrium characterization of the term structure, Journal of Financial Economics, 5 (1977), 177-188.
doi: 10.1002/9781119186229.ch6. |
show all references
References:
[1] |
D. Becherer, Utility-indifference hedging and valuation via reaction-diffusion systems, Proc. R. Soc. Lond. A, 460 (2004), 27-51.
doi: 10.1098/rspa.2003.1234. |
[2] |
F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Political Econ., 81 (1973), 637-654.
doi: 10.1086/260062. |
[3] |
D. Brigo and F. Mercurio, Interest Rate Models Theory and Practice, Springer, Berlin, 2001.
doi: 10.1007/978-3-662-04553-4. |
[4] |
M. Davis, V. G. Panas and T. Zariphopoulou, European option pricing with transaction costs, SIAM Journal on Control and Optimization, 31 (1993), 470-493.
doi: 10.1137/0331022. |
[5] |
A. Friedman, Stochastic Differential Equations, Vol 1 & 2, Academic Press, New York, 1975. |
[6] |
S. D. Hodges and A. Neuberger, Optimal replication of contingent claims under transaction costs, Review of Futures Markets, 8 (1989), 222-239. |
[7] |
J. Hull and A. White, Pricing interest-rate derivative securities, The Review of Financial Studies, 3 (1990), 573-592.
doi: 10.1093/rfs/3.4.573. |
[8] |
L. Jiang, Mathematical Modeling and Methods of Option Pricing, World Scientific Publishing, Singapore, 2005.
doi: 10.1142/5855. |
[9] |
J. Kallsen, Utility-based derivative pricing in incomplete markets, Mathematical Finance-Bachelier Congress 2000, H. Geman, D. Madan, S. R. Pliska, T. Vorst (Eds.), Springer, Berlin, 2002, 313-338. |
[10] |
Z. Kang and S. Stojanovic, Interest rate risk premium and equity valuation, Journal of Systems Science and Complexity, 23 (2010), 484-498.
doi: 10.1007/s11424-010-0142-y. |
[11] |
G. Liang and L. Jiang, A modified structural model for credit risk, IMA Journal of Management Mathematics, 23 (2012), 147-170.
doi: 10.1093/imaman/dpr004. |
[12] |
R. C. Merton, Theory of rational option pricing, Bell Journal of Economics and Management Science, 4 (1973), 141-183.
doi: 10.2307/3003143. |
[13] |
R. C. Merton, Continuous-Time Finance, Wiley-Blackwell, 1990. |
[14] |
M. Musiela and T. Zariphopoulou, An example of indifference prices under exponential preferences, Finance and Stochastics, 8 (2004), 229-239.
doi: 10.1007/s00780-003-0112-5. |
[15] |
R. Rouge and N. El Karoui, Pricing via utility maximization and entropy, Mathematical Finance, 10 (2000), 259-276.
doi: 10.1111/1467-9965.00093. |
[16] |
S. Stojanovic, Computational Financial Mathematics using MATHEMATICA®, Birkhauser, Boston, 2003.
doi: 10.1007/978-1-4612-0043-7. |
[17] |
S. Stojanovic, Risk premium and fair option prices under stochastic volatility: The HARA solution, C. R. Acad. Sci. Paris Ser. I, 340 (2005), 551-556.
doi: 10.1016/j.crma.2004.11.002. |
[18] |
S. Stojanovic, Stochastic Volatility & Risk Premium, Lecture Notes, GARP, New York, 2005. |
[19] |
S. Stojanovic, Pricing and hedging of multi type contracts under multidimensional risks in incomplete markets modeled by general Itô SDE systems, Asia Pacific Financial Markets, 13 (2006), 345-372. |
[20] |
S. Stojanovic, Advanced Financial Engineering for Interest Rates, Equity, and FX, Lecture Notes, GARP, New York, 2007. |
[21] |
S. Stojanovic, Any-utility neutral and indifference pricing and hedging, Risk and Decision Analysis, 4 (2013), 103-118. |
[22] |
S. Stojanovic, Neutral and Indifference Portfolio Pricing, Hedging and Investing, Springer, New York, 2011. |
[23] |
O. Vasicek, An equilibrium characterization of the term structure, Journal of Financial Economics, 5 (1977), 177-188.
doi: 10.1002/9781119186229.ch6. |
[1] |
María Teresa V. Martínez-Palacios, Adrián Hernández-Del-Valle, Ambrosio Ortiz-Ramírez. On the pricing of Asian options with geometric average of American type with stochastic interest rate: A stochastic optimal control approach. Journal of Dynamics and Games, 2019, 6 (1) : 53-64. doi: 10.3934/jdg.2019004 |
[2] |
Cuilian You, Le Bo. Pricing of European call option under fuzzy interest rate. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022033 |
[3] |
Linlin Tian, Xiaoyi Zhang, Yizhou Bai. Optimal dividend of compound poisson process under a stochastic interest rate. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2141-2157. doi: 10.3934/jimo.2019047 |
[4] |
Dingjun Yao, Kun Fan. Optimal risk control and dividend strategies in the presence of two reinsurers: Variance premium principle. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1055-1083. doi: 10.3934/jimo.2017090 |
[5] |
Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial and Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165 |
[6] |
Xin Jiang, Kam Chuen Yuen, Mi Chen. Optimal investment and reinsurance with premium control. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2781-2797. doi: 10.3934/jimo.2019080 |
[7] |
Roya Soltani, Seyed Jafar Sadjadi, Mona Rahnama. Artificial intelligence combined with nonlinear optimization techniques and their application for yield curve optimization. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1701-1721. doi: 10.3934/jimo.2017014 |
[8] |
Qigang Yuan, Yutong Sun, Jingli Ren. How interest rate influences a business cycle model. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3231-3251. doi: 10.3934/dcdss.2020190 |
[9] |
Haixiang Yao, Zhongfei Li, Yongzeng Lai. Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate. Journal of Industrial and Management Optimization, 2016, 12 (1) : 187-209. doi: 10.3934/jimo.2016.12.187 |
[10] |
Tien-Yu Lin, Ming-Te Chen, Kuo-Lung Hou. An inventory model for items with imperfect quality and quantity discounts under adjusted screening rate and earned interest. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1333-1347. doi: 10.3934/jimo.2016.12.1333 |
[11] |
Yan Zhang, Yonghong Wu, Benchawan Wiwatanapataphee, Francisca Angkola. Asset liability management for an ordinary insurance system with proportional reinsurance in a CIR stochastic interest rate and Heston stochastic volatility framework. Journal of Industrial and Management Optimization, 2020, 16 (1) : 71-101. doi: 10.3934/jimo.2018141 |
[12] |
Shou Chen, Chen Xiao. Financial risk contagion and optimal control. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022070 |
[13] |
Engel John C Dela Vega, Robert J Elliott. Conditional coherent risk measures and regime-switching conic pricing. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 267-300. doi: 10.3934/puqr.2021014 |
[14] |
Lihua Bian, Zhongfei Li, Haixiang Yao. Time-consistent strategy for a multi-period mean-variance asset-liability management problem with stochastic interest rate. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1383-1410. doi: 10.3934/jimo.2020026 |
[15] |
Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial and Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531 |
[16] |
Tao Chen, Wei Liu, Tao Tan, Lijun Wu, Yijun Hu. Optimal reinsurance with default risk: A reinsurer's perspective. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2971-2987. doi: 10.3934/jimo.2020103 |
[17] |
Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721 |
[18] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control and Related Fields, 2022, 12 (1) : 201-223. doi: 10.3934/mcrf.2021007 |
[19] |
Bei Hu, Lishang Jiang, Jin Liang, Wei Wei. A fully non-linear PDE problem from pricing CDS with counterparty risk. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2001-2016. doi: 10.3934/dcdsb.2012.17.2001 |
[20] |
Kegui Chen, Xinyu Wang, Min Huang, Wai-Ki Ching. Compensation plan, pricing and production decisions with inventory-dependent salvage value, and asymmetric risk-averse sales agent. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1397-1422. doi: 10.3934/jimo.2018013 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]