July  2016, 21(5): 1635-1649. doi: 10.3934/dcdsb.2016015

Interior $C^{1,\alpha}$ regularity of weak solutions for a class of quasilinear elliptic equations

1. 

Department of Mathematics,Shanghai University, Shanghai 200444, China

2. 

LMAM, School of Mathematical Sciences, Peking University, Bejing 100871

Received  September 2013 Revised  March 2014 Published  April 2016

In this paper we present a new proof for the interior $C^{1,\alpha}$ regularity of weak solutions for a class of quasilinear elliptic equations, whose prototype is the $p$-Laplace equation.
Citation: Fengping Yao, Shulin Zhou. Interior $C^{1,\alpha}$ regularity of weak solutions for a class of quasilinear elliptic equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1635-1649. doi: 10.3934/dcdsb.2016015
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces (2nd edition), Academic Press, New York, 2003.

[2]

S. Byun, F. Yao and S. Zhou, Gradient Estimates in Orlicz space for nonlinear elliptic Equations, J. Funct. Anal., 255 (2008), 1851-1873. doi: 10.1016/j.jfa.2008.09.007.

[3]

L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math., 130 (1989), 189-213. doi: 10.2307/1971480.

[4]

Y. Chen and L. Wu, Second Order Elliptic Partial Differential Equations and Elliptic Systems, American Mathematical Society, Providence, RI, 1998.

[5]

A. Cianchi and V. Maz'ya, Global Lipschitz regularity for a class of quasilinear elliptic equations, Comm. Partial Differential Equations, 36 (2011), 100-133. doi: 10.1080/03605301003657843.

[6]

E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850. doi: 10.1016/0362-546X(83)90061-5.

[7]

F. Duzaar and G. Mingione, Local Lipschitz regularity for degenerate elliptic systems, Ann. Inst. H. Poincaré, 27 (2010), 1361-1396. doi: 10.1016/j.anihpc.2010.07.002.

[8]

F. Duzaar and G. Mingione, Gradient estimates via linear and nonlinear potentials, J. Funct. Anal., 259 (2010), 2961-2998. doi: 10.1016/j.jfa.2010.08.006.

[9]

L. C. Evans, A new proof of local $C^{1,\alpha}$ regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations, 45 (1982), 356-373. doi: 10.1016/0022-0396(82)90033-X.

[10]

M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, 1983.

[11]

D. Gilbarg and N. Trudinger, Elliptic Partial Diferential Equations of Second Order (3rd edition), Springer-Verlag, Berlin, 1998.

[12]

J. L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J., 32 (1983), 849-858. doi: 10.1512/iumj.1983.32.32058.

[13]

G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), 311-361. doi: 10.1080/03605309108820761.

[14]

J. Malý, D. Swanson and W. Ziemer, Fine behavior of functions whose gradients are in an Orlicz space, Studia Math., 190 (2009), 33-71. doi: 10.4064/sm190-1-2.

[15]

M. Shaw and L. Wang, Hölder and Lp estimates for Db on CR manifolds of arbitrary codimension, Math. Ann., 331 (2005), 297-343. doi: 10.1007/s00208-004-0583-5.

[16]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150. doi: 10.1016/0022-0396(84)90105-0.

[17]

K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240. doi: 10.1007/BF02392316.

[18]

L. Wang, Compactness methods for certain degenerate elliptic equations, J. Differential Equations, 107 (1994), 341-350. doi: 10.1006/jdeq.1994.1016.

[19]

L. Wang, Hölder estimates for subelliptic operators, J. Funct. Anal., 199 (2003), 228-242. doi: 10.1016/S0022-1236(03)00093-4.

[20]

L. Wang, F. Yao, S. Zhou and H. Jia, Optimal regularity for the poisson equation, Proc. Amer. Math. Soc., 137 (2009), 2037-2047. doi: 10.1090/S0002-9939-09-09805-0.

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces (2nd edition), Academic Press, New York, 2003.

[2]

S. Byun, F. Yao and S. Zhou, Gradient Estimates in Orlicz space for nonlinear elliptic Equations, J. Funct. Anal., 255 (2008), 1851-1873. doi: 10.1016/j.jfa.2008.09.007.

[3]

L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math., 130 (1989), 189-213. doi: 10.2307/1971480.

[4]

Y. Chen and L. Wu, Second Order Elliptic Partial Differential Equations and Elliptic Systems, American Mathematical Society, Providence, RI, 1998.

[5]

A. Cianchi and V. Maz'ya, Global Lipschitz regularity for a class of quasilinear elliptic equations, Comm. Partial Differential Equations, 36 (2011), 100-133. doi: 10.1080/03605301003657843.

[6]

E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850. doi: 10.1016/0362-546X(83)90061-5.

[7]

F. Duzaar and G. Mingione, Local Lipschitz regularity for degenerate elliptic systems, Ann. Inst. H. Poincaré, 27 (2010), 1361-1396. doi: 10.1016/j.anihpc.2010.07.002.

[8]

F. Duzaar and G. Mingione, Gradient estimates via linear and nonlinear potentials, J. Funct. Anal., 259 (2010), 2961-2998. doi: 10.1016/j.jfa.2010.08.006.

[9]

L. C. Evans, A new proof of local $C^{1,\alpha}$ regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations, 45 (1982), 356-373. doi: 10.1016/0022-0396(82)90033-X.

[10]

M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, 1983.

[11]

D. Gilbarg and N. Trudinger, Elliptic Partial Diferential Equations of Second Order (3rd edition), Springer-Verlag, Berlin, 1998.

[12]

J. L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J., 32 (1983), 849-858. doi: 10.1512/iumj.1983.32.32058.

[13]

G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), 311-361. doi: 10.1080/03605309108820761.

[14]

J. Malý, D. Swanson and W. Ziemer, Fine behavior of functions whose gradients are in an Orlicz space, Studia Math., 190 (2009), 33-71. doi: 10.4064/sm190-1-2.

[15]

M. Shaw and L. Wang, Hölder and Lp estimates for Db on CR manifolds of arbitrary codimension, Math. Ann., 331 (2005), 297-343. doi: 10.1007/s00208-004-0583-5.

[16]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150. doi: 10.1016/0022-0396(84)90105-0.

[17]

K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240. doi: 10.1007/BF02392316.

[18]

L. Wang, Compactness methods for certain degenerate elliptic equations, J. Differential Equations, 107 (1994), 341-350. doi: 10.1006/jdeq.1994.1016.

[19]

L. Wang, Hölder estimates for subelliptic operators, J. Funct. Anal., 199 (2003), 228-242. doi: 10.1016/S0022-1236(03)00093-4.

[20]

L. Wang, F. Yao, S. Zhou and H. Jia, Optimal regularity for the poisson equation, Proc. Amer. Math. Soc., 137 (2009), 2037-2047. doi: 10.1090/S0002-9939-09-09805-0.

[1]

Wendong Wang, Liqun Zhang. The $C^{\alpha}$ regularity of weak solutions of ultraparabolic equations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1261-1275. doi: 10.3934/dcds.2011.29.1261

[2]

Rong Dong, Dongsheng Li, Lihe Wang. Regularity of elliptic systems in divergence form with directional homogenization. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 75-90. doi: 10.3934/dcds.2018004

[3]

M. Matzeu, Raffaella Servadei. A variational approach to a class of quasilinear elliptic equations not in divergence form. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 819-830. doi: 10.3934/dcdss.2012.5.819

[4]

Yun Yang. Horseshoes for $\mathcal{C}^{1+\alpha}$ mappings with hyperbolic measures. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5133-5152. doi: 10.3934/dcds.2015.35.5133

[5]

Christian Bonatti, Sylvain Crovisier, Katsutoshi Shinohara. The $C^{1+\alpha }$ hypothesis in Pesin Theory revisited. Journal of Modern Dynamics, 2013, 7 (4) : 605-618. doi: 10.3934/jmd.2013.7.605

[6]

Matteo Cozzi. On the variation of the fractional mean curvature under the effect of $C^{1, \alpha}$ perturbations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5769-5786. doi: 10.3934/dcds.2015.35.5769

[7]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1363-1383. doi: 10.3934/cpaa.2021024

[8]

Giuseppe Riey. Regularity and weak comparison principles for double phase quasilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4863-4873. doi: 10.3934/dcds.2019198

[9]

Ilaria Fragalà, Filippo Gazzola, Gary Lieberman. Regularity and nonexistence results for anisotropic quasilinear elliptic equations in convex domains. Conference Publications, 2005, 2005 (Special) : 280-286. doi: 10.3934/proc.2005.2005.280

[10]

Libin Wang. Breakdown of $C^1$ solution to the Cauchy problem for quasilinear hyperbolic systems with characteristics with constant multiplicity. Communications on Pure and Applied Analysis, 2003, 2 (1) : 77-89. doi: 10.3934/cpaa.2003.2.77

[11]

Gary Lieberman. Nonlocal problems for quasilinear parabolic equations in divergence form. Conference Publications, 2003, 2003 (Special) : 563-570. doi: 10.3934/proc.2003.2003.563

[12]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[13]

Raphaël Danchin, Piotr B. Mucha. Divergence. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1163-1172. doi: 10.3934/dcdss.2013.6.1163

[14]

Dian Palagachev, Lubomira G. Softova. Quasilinear divergence form parabolic equations in Reifenberg flat domains. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1397-1410. doi: 10.3934/dcds.2011.31.1397

[15]

Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 165-176. doi: 10.3934/dcdss.2020009

[16]

Yong Zhou, Jishan Fan. Regularity criteria for a magnetohydrodynamic-$\alpha$ model. Communications on Pure and Applied Analysis, 2011, 10 (1) : 309-326. doi: 10.3934/cpaa.2011.10.309

[17]

Keonhee Lee, Kazumine Moriyasu, Kazuhiro Sakai. $C^1$-stable shadowing diffeomorphisms. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 683-697. doi: 10.3934/dcds.2008.22.683

[18]

Lan Wen. A uniform $C^1$ connecting lemma. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 257-265. doi: 10.3934/dcds.2002.8.257

[19]

Amal Attouchi, Eero Ruosteenoja. Gradient regularity for a singular parabolic equation in non-divergence form. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5955-5972. doi: 10.3934/dcds.2020254

[20]

Hermann Köenig, Vitali Milman. Derivative and entropy: the only derivations from $C^1(RR)$ to $C(RR)$. Electronic Research Announcements, 2011, 18: 54-60. doi: 10.3934/era.2011.18.54

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (214)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]