August  2016, 21(6): 1729-1755. doi: 10.3934/dcdsb.2016020

Existence and nonexistence of traveling pulses in a lateral inhibition neural network

1. 

Department of Mathematics, Drexel University, Philadelphia, PA 19104, United States, United States

Received  April 2015 Revised  June 2016 Published  June 2016

We study the spatial propagating dynamics in a neural network of excitatory and inhibitory populations. Our study demonstrates the existence and nonexistence of traveling pulse solutions with a nonsaturating piecewise linear gain function. We prove that traveling pulse solutions do not exist for such neural field models with even (symmetric) couplings. The neural field models only support traveling pulse solutions with asymmetric couplings. We also show that such neural field models with asymmetric couplings will lead to a system of delay differential equations. We further compute traveling 1--bump solutions using the system of delay differential equations. Finally, we develop Evans functions to assess the stability of traveling 1--bump solutions.
Citation: Yixin Guo, Aijun Zhang. Existence and nonexistence of traveling pulses in a lateral inhibition neural network. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1729-1755. doi: 10.3934/dcdsb.2016020
References:
[1]

S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields,, Biol. Cybernet., 27 (1977), 77.  doi: 10.1007/BF00337259.  Google Scholar

[2]

L. Bai, X. Huang, Q. Yang and J.-Y. Wu, Spatiotemporal patterns of an evoked network oscillation in neocortical slices: Coupled local oscillators,, J. Neurophysiol., 96 (2006), 2528.  doi: 10.1152/jn.00645.2006.  Google Scholar

[3]

P. W. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal,, J. Math. Anal. Appl., 332 (2007), 428.  doi: 10.1016/j.jmaa.2006.09.007.  Google Scholar

[4]

G. B. Ermentrout and J. D. Cowan, A mathematical theory of visual hallucination patterns,, Biol. Cybern., 34 (1979), 137.  doi: 10.1007/BF00336965.  Google Scholar

[5]

P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J. Thomas and M. L. Wiener, Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex,, Phil. Trans. R. Soc. B, 356 (2001), 299.  doi: 10.1098/rstb.2000.0769.  Google Scholar

[6]

P. C. Bressloff and S. E. Folias, Front bifurcations in an excitatory neural network,, SIAM J. Appl. Math., 65 (2004), 131.  doi: 10.1137/S0036139903434481.  Google Scholar

[7]

P. C Bressloff and J. Wilkerson, Traveling pulses in a stochastic neural field model of direction selectivity., Frontiers in Computational Neuroscience, 6 (2012).  doi: 10.3389/fncom.2012.00090.  Google Scholar

[8]

P. C. Bressloff, Spatiotemporal dynamics of continuum neural fields: Invited Topical review., J. Phys. A, 45 (2012).  doi: 10.1088/1751-8113/45/3/033001.  Google Scholar

[9]

Y. Chagnac-Amitai and B. W. Connors, Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex,, J. Neurophysiol., 62 (1989), 1149.   Google Scholar

[10]

R. D. Chervin, P. A. Pierce and B. W. Connors, Periodicity and directionality in the propagation of epileptiform discharges across discharges across neocortex,, J. Neurophysiol., 60 (1988), 1695.   Google Scholar

[11]

S. Coombes, G. J. Lord and M. R. Owen, Waves and bumps in neuronal networks with axo-dendritic synaptic interactions,, Phys. D, 178 (2003), 219.  doi: 10.1016/S0167-2789(03)00002-2.  Google Scholar

[12]

S. Coombes and M. R. Owen, Evans functions for integral neural field equations with Heaviside firing rate function,, SIAM J. Appl. Dyn. Syst., 3 (2004), 574.  doi: 10.1137/040605953.  Google Scholar

[13]

M. Enculescu, A note on traveling fronts and pulses in a firing rate model of a neuronal network,, Physica D, 196 (2004), 362.  doi: 10.1016/j.physd.2004.06.005.  Google Scholar

[14]

G. B. Ermentrout, Reduction of conductance-based models with slow synapses to neural nets,, J. Math. Biol., 6 (1994), 679.  doi: 10.1162/neco.1994.6.4.679.  Google Scholar

[15]

G. B. Ermentrout and J. B. McLeod, Existence and uniqueness of travelling waves for a neural network,, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 461.  doi: 10.1017/S030821050002583X.  Google Scholar

[16]

J. W. Evans, Nerve axon equations, I: Linear approximations,, Indiana Univ. Math. J., 21 (1972), 877.   Google Scholar

[17]

J. W. Evans, Nerve axon equations, II: Stability at rest,, Indiana Univ. Math. J., 22 (1972), 75.  doi: 10.1512/iumj.1973.22.22009.  Google Scholar

[18]

J. W. Evans, Nerve axon equations, III: Stability of the nerve impulse,, Indiana Univ. Math. J., 22 (1972), 577.  doi: 10.1512/iumj.1973.22.22048.  Google Scholar

[19]

J. W. Evans, Nerve axon equations, IV: The stable and unstable impulse,, Indiana Univ. Math. J., 24 (1975), 1169.   Google Scholar

[20]

S. E. Folias and P. C. Bressloff, Stimulus-locked waves and breathers in an excitatory neural network,, SIAM J. Appl. Math., 65 (2005), 2067.  doi: 10.1137/040615171.  Google Scholar

[21]

M. A. Geise, Dynamic Neural Field Theory for Motion Perception,, Dordrecht: Kluwer, (1999).   Google Scholar

[22]

Y. Guo, Existence and stability of traveling fronts in a lateral inhibition neural network,, SIAM J. on Applied Dynamical Systems, 11 (2012), 1543.  doi: 10.1137/120876903.  Google Scholar

[23]

Y. Guo and C. C. Chow, Existence and stability of standing pulses in neural networks: I. existence,, SIAM J. on Applied Dynamical Systems, 4 (2005), 217.  doi: 10.1137/040609471.  Google Scholar

[24]

Y. Guo and C. C. Chow, Existence and stability of standing pulses in neural networks: II. stability,, SIAM J. on Applied Dynamical Systems, 4 (2005), 249.  doi: 10.1137/040609483.  Google Scholar

[25]

V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers, The evolution of dispersal,, J. Math. Biol., 47 (2003), 483.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[26]

Z. P. Kilpatrick, S. E. Folias and P. C. Bressloff, Traveling pulses and wave propagation failure in inhomogeneous neural media,, SIAM J. Appl. Dyn. Syst., 7 (2008), 161.  doi: 10.1137/070699214.  Google Scholar

[27]

K. Kishimoto and S. Amari, Existence and stability of local excitations in homogeneous neural fields,, J. Math. Biol., 7 (1979), 303.  doi: 10.1007/BF00275151.  Google Scholar

[28]

N. Laaris, G. C. Carlson and A. Keller, Thalamic-evoked synaptic interactions in barrel cortex revealed by optical imaging,, J. Neurosci., 20 (2000), 1529.   Google Scholar

[29]

A. D. Myshkis, Differential equations, ordinary with distributed arguments,, Encyclopaedia of Mathematics, (1989), 144.   Google Scholar

[30]

D. M. Petrich and R. E. Goldstein, Nonlocal contour dynamics model for chemical front motion,, Phys. Rev. Lett., 72 (1994), 1120.  doi: 10.1103/PhysRevLett.72.1120.  Google Scholar

[31]

D. J. Pinto and G. B. Ermentrout, Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses,, SIAM J. Appl. Math., 62 (2001), 206.  doi: 10.1137/S0036139900346453.  Google Scholar

[32]

D. J. Pinto, R. K. Jackson and C. E. Wayne, Existence and stability of traveling pulses in a continuous neuronal network,, SIAM J. Appl. Dyn. Syst., 4 (2005), 954.  doi: 10.1137/040613020.  Google Scholar

[33]

D. J. Pinto, S. L. Patrick, W. C. Huang and B. W. Connors, Initiation, propagation and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms,, J. Neurosci., 25 (2005), 8131.  doi: 10.1523/JNEUROSCI.2278-05.2005.  Google Scholar

[34]

D. J. Pinto, W. Troy and T. Kneezel, Asymmetric activity waves in synaptic cortical systems,, SIAM J. Appl. Dyn. Syst., 8 (2009), 1218.  doi: 10.1137/08074307X.  Google Scholar

[35]

P. A. Robinson, C. J. Rennie, J. J. Wright, H. Bahramali, E. Gordon and D. I. Rowe D, Prediction of electroencephalographic spectra from neurophysiology,, Phys. Rev. E, 63 (2001).  doi: 10.1103/PhysRevE.63.021903.  Google Scholar

[36]

D. J. T. Liley, P. J. Cadusch and M. P. Dafilis, A spatially continuous mean field theory of electrocortical activity,, Network, 13 (2002), 67.   Google Scholar

[37]

B. Sandstede, Stability of travelling waves,, in Handbook of Dynamical Systems, 2 (2002), 983.  doi: 10.1016/S1874-575X(02)80039-X.  Google Scholar

[38]

B. Sandstede, Evans functions and nonlinear stability of travelling waves in neuronal network models,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 2693.  doi: 10.1142/S0218127407018695.  Google Scholar

[39]

D. C. Somers, S. Nelson and M. Sur, An emergent model of orientation selectivity in cat visual cortical simple cells,, J. Neurosci, 15 (1995), 5448.   Google Scholar

[40]

W. C. Troy, Traveling waves and synchrony in an excitable large-scale neuronal network with asymmetric connections,, SIAM J. Appl. Dyn. Syst., 7 (2008), 1247.  doi: 10.1137/070709888.  Google Scholar

[41]

H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons,, Biophys. J., 12 (1972), 1.  doi: 10.1016/S0006-3495(72)86068-5.  Google Scholar

[42]

H. R. Wilson and J. D. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue,, Kybernetic, 13 (1973), 55.  doi: 10.1007/BF00288786.  Google Scholar

[43]

J. Y. Wu, L. Guan and Y. Tsau, Propagating activation during oscillations and evoked responses in neocortical slices,, J. Neurosci., 19 (1999), 5005.   Google Scholar

[44]

X. Xie and M. Giese, Nonlinear dynamics of direction-selective recurrent neural media,, Phys. Rev. E, 65 (2002).  doi: 10.1103/PhysRevE.65.051904.  Google Scholar

[45]

L. Zhang, On stability of traveling wave solutions in synaptically coupled neuronal networks,, Differential Integral Equations, 16 (2003), 513.   Google Scholar

[46]

L. Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neuronal networks,, J. Differential Equations, 197 (2004), 162.  doi: 10.1016/S0022-0396(03)00170-0.  Google Scholar

show all references

References:
[1]

S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields,, Biol. Cybernet., 27 (1977), 77.  doi: 10.1007/BF00337259.  Google Scholar

[2]

L. Bai, X. Huang, Q. Yang and J.-Y. Wu, Spatiotemporal patterns of an evoked network oscillation in neocortical slices: Coupled local oscillators,, J. Neurophysiol., 96 (2006), 2528.  doi: 10.1152/jn.00645.2006.  Google Scholar

[3]

P. W. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal,, J. Math. Anal. Appl., 332 (2007), 428.  doi: 10.1016/j.jmaa.2006.09.007.  Google Scholar

[4]

G. B. Ermentrout and J. D. Cowan, A mathematical theory of visual hallucination patterns,, Biol. Cybern., 34 (1979), 137.  doi: 10.1007/BF00336965.  Google Scholar

[5]

P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J. Thomas and M. L. Wiener, Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex,, Phil. Trans. R. Soc. B, 356 (2001), 299.  doi: 10.1098/rstb.2000.0769.  Google Scholar

[6]

P. C. Bressloff and S. E. Folias, Front bifurcations in an excitatory neural network,, SIAM J. Appl. Math., 65 (2004), 131.  doi: 10.1137/S0036139903434481.  Google Scholar

[7]

P. C Bressloff and J. Wilkerson, Traveling pulses in a stochastic neural field model of direction selectivity., Frontiers in Computational Neuroscience, 6 (2012).  doi: 10.3389/fncom.2012.00090.  Google Scholar

[8]

P. C. Bressloff, Spatiotemporal dynamics of continuum neural fields: Invited Topical review., J. Phys. A, 45 (2012).  doi: 10.1088/1751-8113/45/3/033001.  Google Scholar

[9]

Y. Chagnac-Amitai and B. W. Connors, Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex,, J. Neurophysiol., 62 (1989), 1149.   Google Scholar

[10]

R. D. Chervin, P. A. Pierce and B. W. Connors, Periodicity and directionality in the propagation of epileptiform discharges across discharges across neocortex,, J. Neurophysiol., 60 (1988), 1695.   Google Scholar

[11]

S. Coombes, G. J. Lord and M. R. Owen, Waves and bumps in neuronal networks with axo-dendritic synaptic interactions,, Phys. D, 178 (2003), 219.  doi: 10.1016/S0167-2789(03)00002-2.  Google Scholar

[12]

S. Coombes and M. R. Owen, Evans functions for integral neural field equations with Heaviside firing rate function,, SIAM J. Appl. Dyn. Syst., 3 (2004), 574.  doi: 10.1137/040605953.  Google Scholar

[13]

M. Enculescu, A note on traveling fronts and pulses in a firing rate model of a neuronal network,, Physica D, 196 (2004), 362.  doi: 10.1016/j.physd.2004.06.005.  Google Scholar

[14]

G. B. Ermentrout, Reduction of conductance-based models with slow synapses to neural nets,, J. Math. Biol., 6 (1994), 679.  doi: 10.1162/neco.1994.6.4.679.  Google Scholar

[15]

G. B. Ermentrout and J. B. McLeod, Existence and uniqueness of travelling waves for a neural network,, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 461.  doi: 10.1017/S030821050002583X.  Google Scholar

[16]

J. W. Evans, Nerve axon equations, I: Linear approximations,, Indiana Univ. Math. J., 21 (1972), 877.   Google Scholar

[17]

J. W. Evans, Nerve axon equations, II: Stability at rest,, Indiana Univ. Math. J., 22 (1972), 75.  doi: 10.1512/iumj.1973.22.22009.  Google Scholar

[18]

J. W. Evans, Nerve axon equations, III: Stability of the nerve impulse,, Indiana Univ. Math. J., 22 (1972), 577.  doi: 10.1512/iumj.1973.22.22048.  Google Scholar

[19]

J. W. Evans, Nerve axon equations, IV: The stable and unstable impulse,, Indiana Univ. Math. J., 24 (1975), 1169.   Google Scholar

[20]

S. E. Folias and P. C. Bressloff, Stimulus-locked waves and breathers in an excitatory neural network,, SIAM J. Appl. Math., 65 (2005), 2067.  doi: 10.1137/040615171.  Google Scholar

[21]

M. A. Geise, Dynamic Neural Field Theory for Motion Perception,, Dordrecht: Kluwer, (1999).   Google Scholar

[22]

Y. Guo, Existence and stability of traveling fronts in a lateral inhibition neural network,, SIAM J. on Applied Dynamical Systems, 11 (2012), 1543.  doi: 10.1137/120876903.  Google Scholar

[23]

Y. Guo and C. C. Chow, Existence and stability of standing pulses in neural networks: I. existence,, SIAM J. on Applied Dynamical Systems, 4 (2005), 217.  doi: 10.1137/040609471.  Google Scholar

[24]

Y. Guo and C. C. Chow, Existence and stability of standing pulses in neural networks: II. stability,, SIAM J. on Applied Dynamical Systems, 4 (2005), 249.  doi: 10.1137/040609483.  Google Scholar

[25]

V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers, The evolution of dispersal,, J. Math. Biol., 47 (2003), 483.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[26]

Z. P. Kilpatrick, S. E. Folias and P. C. Bressloff, Traveling pulses and wave propagation failure in inhomogeneous neural media,, SIAM J. Appl. Dyn. Syst., 7 (2008), 161.  doi: 10.1137/070699214.  Google Scholar

[27]

K. Kishimoto and S. Amari, Existence and stability of local excitations in homogeneous neural fields,, J. Math. Biol., 7 (1979), 303.  doi: 10.1007/BF00275151.  Google Scholar

[28]

N. Laaris, G. C. Carlson and A. Keller, Thalamic-evoked synaptic interactions in barrel cortex revealed by optical imaging,, J. Neurosci., 20 (2000), 1529.   Google Scholar

[29]

A. D. Myshkis, Differential equations, ordinary with distributed arguments,, Encyclopaedia of Mathematics, (1989), 144.   Google Scholar

[30]

D. M. Petrich and R. E. Goldstein, Nonlocal contour dynamics model for chemical front motion,, Phys. Rev. Lett., 72 (1994), 1120.  doi: 10.1103/PhysRevLett.72.1120.  Google Scholar

[31]

D. J. Pinto and G. B. Ermentrout, Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses,, SIAM J. Appl. Math., 62 (2001), 206.  doi: 10.1137/S0036139900346453.  Google Scholar

[32]

D. J. Pinto, R. K. Jackson and C. E. Wayne, Existence and stability of traveling pulses in a continuous neuronal network,, SIAM J. Appl. Dyn. Syst., 4 (2005), 954.  doi: 10.1137/040613020.  Google Scholar

[33]

D. J. Pinto, S. L. Patrick, W. C. Huang and B. W. Connors, Initiation, propagation and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms,, J. Neurosci., 25 (2005), 8131.  doi: 10.1523/JNEUROSCI.2278-05.2005.  Google Scholar

[34]

D. J. Pinto, W. Troy and T. Kneezel, Asymmetric activity waves in synaptic cortical systems,, SIAM J. Appl. Dyn. Syst., 8 (2009), 1218.  doi: 10.1137/08074307X.  Google Scholar

[35]

P. A. Robinson, C. J. Rennie, J. J. Wright, H. Bahramali, E. Gordon and D. I. Rowe D, Prediction of electroencephalographic spectra from neurophysiology,, Phys. Rev. E, 63 (2001).  doi: 10.1103/PhysRevE.63.021903.  Google Scholar

[36]

D. J. T. Liley, P. J. Cadusch and M. P. Dafilis, A spatially continuous mean field theory of electrocortical activity,, Network, 13 (2002), 67.   Google Scholar

[37]

B. Sandstede, Stability of travelling waves,, in Handbook of Dynamical Systems, 2 (2002), 983.  doi: 10.1016/S1874-575X(02)80039-X.  Google Scholar

[38]

B. Sandstede, Evans functions and nonlinear stability of travelling waves in neuronal network models,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 2693.  doi: 10.1142/S0218127407018695.  Google Scholar

[39]

D. C. Somers, S. Nelson and M. Sur, An emergent model of orientation selectivity in cat visual cortical simple cells,, J. Neurosci, 15 (1995), 5448.   Google Scholar

[40]

W. C. Troy, Traveling waves and synchrony in an excitable large-scale neuronal network with asymmetric connections,, SIAM J. Appl. Dyn. Syst., 7 (2008), 1247.  doi: 10.1137/070709888.  Google Scholar

[41]

H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons,, Biophys. J., 12 (1972), 1.  doi: 10.1016/S0006-3495(72)86068-5.  Google Scholar

[42]

H. R. Wilson and J. D. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue,, Kybernetic, 13 (1973), 55.  doi: 10.1007/BF00288786.  Google Scholar

[43]

J. Y. Wu, L. Guan and Y. Tsau, Propagating activation during oscillations and evoked responses in neocortical slices,, J. Neurosci., 19 (1999), 5005.   Google Scholar

[44]

X. Xie and M. Giese, Nonlinear dynamics of direction-selective recurrent neural media,, Phys. Rev. E, 65 (2002).  doi: 10.1103/PhysRevE.65.051904.  Google Scholar

[45]

L. Zhang, On stability of traveling wave solutions in synaptically coupled neuronal networks,, Differential Integral Equations, 16 (2003), 513.   Google Scholar

[46]

L. Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neuronal networks,, J. Differential Equations, 197 (2004), 162.  doi: 10.1016/S0022-0396(03)00170-0.  Google Scholar

[1]

Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419

[2]

Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233

[3]

Ping Liu, Junping Shi, Yuwen Wang. A double saddle-node bifurcation theorem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2923-2933. doi: 10.3934/cpaa.2013.12.2923

[4]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[5]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[6]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[7]

Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911

[8]

Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268

[9]

Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355-368. doi: 10.3934/mbe.2007.4.355

[10]

Urszula Foryś, Jan Poleszczuk. A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 627-641. doi: 10.3934/mbe.2011.8.627

[11]

Todd Kapitula, Björn Sandstede. Eigenvalues and resonances using the Evans function. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 857-869. doi: 10.3934/dcds.2004.10.857

[12]

Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939

[13]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[14]

Shi-Liang Wu, Cheng-Hsiung Hsu. Propagation of monostable traveling fronts in discrete periodic media with delay. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2987-3022. doi: 10.3934/dcds.2018128

[15]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[16]

Peter Bates, Chunlei Zhang. Traveling pulses for the Klein-Gordon equation on a lattice or continuum with long-range interaction. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 235-252. doi: 10.3934/dcds.2006.16.235

[17]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[18]

Chufen Wu, Peixuan Weng. Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 867-892. doi: 10.3934/dcdsb.2011.15.867

[19]

Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457

[20]

Ahmed Elhassanein. Complex dynamics of a forced discretized version of the Mackey-Glass delay differential equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 93-105. doi: 10.3934/dcdsb.2015.20.93

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]