Citation: |
[1] |
S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybernet., 27 (1977), 77-87.doi: 10.1007/BF00337259. |
[2] |
L. Bai, X. Huang, Q. Yang and J.-Y. Wu, Spatiotemporal patterns of an evoked network oscillation in neocortical slices: Coupled local oscillators, J. Neurophysiol., 96 (2006), 2528-2538.doi: 10.1152/jn.00645.2006. |
[3] |
P. W. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.doi: 10.1016/j.jmaa.2006.09.007. |
[4] |
G. B. Ermentrout and J. D. Cowan, A mathematical theory of visual hallucination patterns, Biol. Cybern., 34 (1979), 137-150.doi: 10.1007/BF00336965. |
[5] |
P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J. Thomas and M. L. Wiener, Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex, Phil. Trans. R. Soc. B, 356 (2001), 299-330.doi: 10.1098/rstb.2000.0769. |
[6] |
P. C. Bressloff and S. E. Folias, Front bifurcations in an excitatory neural network, SIAM J. Appl. Math., 65 (2004), 131-151.doi: 10.1137/S0036139903434481. |
[7] |
P. C Bressloff and J. Wilkerson, Traveling pulses in a stochastic neural field model of direction selectivity. Frontiers in Computational Neuroscience, 6 (2012).doi: 10.3389/fncom.2012.00090. |
[8] |
P. C. Bressloff, Spatiotemporal dynamics of continuum neural fields: Invited Topical review. J. Phys. A, 45 (2012), 033001, 109pp.doi: 10.1088/1751-8113/45/3/033001. |
[9] |
Y. Chagnac-Amitai and B. W. Connors, Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex, J. Neurophysiol., 62 (1989), 1149-1162. |
[10] |
R. D. Chervin, P. A. Pierce and B. W. Connors, Periodicity and directionality in the propagation of epileptiform discharges across discharges across neocortex, J. Neurophysiol., 60 (1988), 1695-1713. |
[11] |
S. Coombes, G. J. Lord and M. R. Owen, Waves and bumps in neuronal networks with axo-dendritic synaptic interactions, Phys. D, 178 (2003), 219-241.doi: 10.1016/S0167-2789(03)00002-2. |
[12] |
S. Coombes and M. R. Owen, Evans functions for integral neural field equations with Heaviside firing rate function, SIAM J. Appl. Dyn. Syst., 3 (2004), 574-600.doi: 10.1137/040605953. |
[13] |
M. Enculescu, A note on traveling fronts and pulses in a firing rate model of a neuronal network, Physica D, 196 (2004), 362-386.doi: 10.1016/j.physd.2004.06.005. |
[14] |
G. B. Ermentrout, Reduction of conductance-based models with slow synapses to neural nets, J. Math. Biol., 6 (1994), 679-695.doi: 10.1162/neco.1994.6.4.679. |
[15] |
G. B. Ermentrout and J. B. McLeod, Existence and uniqueness of travelling waves for a neural network, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 461-478.doi: 10.1017/S030821050002583X. |
[16] |
J. W. Evans, Nerve axon equations, I: Linear approximations, Indiana Univ. Math. J., 21 (1972), 877-955. |
[17] |
J. W. Evans, Nerve axon equations, II: Stability at rest, Indiana Univ. Math. J., 22 (1972), 75-90.doi: 10.1512/iumj.1973.22.22009. |
[18] |
J. W. Evans, Nerve axon equations, III: Stability of the nerve impulse, Indiana Univ. Math. J., 22 (1972), 577-593.doi: 10.1512/iumj.1973.22.22048. |
[19] |
J. W. Evans, Nerve axon equations, IV: The stable and unstable impulse, Indiana Univ. Math. J., 24 (1975), 1169-1190. |
[20] |
S. E. Folias and P. C. Bressloff, Stimulus-locked waves and breathers in an excitatory neural network, SIAM J. Appl. Math., 65 (2005), 2067-2092.doi: 10.1137/040615171. |
[21] |
M. A. Geise, Dynamic Neural Field Theory for Motion Perception, Dordrecht: Kluwer, 1999. |
[22] |
Y. Guo, Existence and stability of traveling fronts in a lateral inhibition neural network, SIAM J. on Applied Dynamical Systems, 11 (2012), 1543-1582.doi: 10.1137/120876903. |
[23] |
Y. Guo and C. C. Chow, Existence and stability of standing pulses in neural networks: I. existence, SIAM J. on Applied Dynamical Systems, 4 (2005), 217-248.doi: 10.1137/040609471. |
[24] |
Y. Guo and C. C. Chow, Existence and stability of standing pulses in neural networks: II. stability, SIAM J. on Applied Dynamical Systems, 4 (2005), 249-281.doi: 10.1137/040609483. |
[25] |
V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.doi: 10.1007/s00285-003-0210-1. |
[26] |
Z. P. Kilpatrick, S. E. Folias and P. C. Bressloff, Traveling pulses and wave propagation failure in inhomogeneous neural media, SIAM J. Appl. Dyn. Syst., 7 (2008), 161-185.doi: 10.1137/070699214. |
[27] |
K. Kishimoto and S. Amari, Existence and stability of local excitations in homogeneous neural fields, J. Math. Biol., 7 (1979), 303-318.doi: 10.1007/BF00275151. |
[28] |
N. Laaris, G. C. Carlson and A. Keller, Thalamic-evoked synaptic interactions in barrel cortex revealed by optical imaging, J. Neurosci., 20 (2000), 1529-1537. |
[29] |
A. D. Myshkis, Differential equations, ordinary with distributed arguments, Encyclopaedia of Mathematics, Vol. 3, Kluwer Academic Publishers, Boston, 1989, 144-147. |
[30] |
D. M. Petrich and R. E. Goldstein, Nonlocal contour dynamics model for chemical front motion, Phys. Rev. Lett., 72 (1994), 1120-1123.doi: 10.1103/PhysRevLett.72.1120. |
[31] |
D. J. Pinto and G. B. Ermentrout, Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses, SIAM J. Appl. Math., 62 (2001), 206-225.doi: 10.1137/S0036139900346453. |
[32] |
D. J. Pinto, R. K. Jackson and C. E. Wayne, Existence and stability of traveling pulses in a continuous neuronal network, SIAM J. Appl. Dyn. Syst., 4 (2005), 954-984.doi: 10.1137/040613020. |
[33] |
D. J. Pinto, S. L. Patrick, W. C. Huang and B. W. Connors, Initiation, propagation and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms, J. Neurosci., 25 (2005), 8131-8140.doi: 10.1523/JNEUROSCI.2278-05.2005. |
[34] |
D. J. Pinto, W. Troy and T. Kneezel, Asymmetric activity waves in synaptic cortical systems, SIAM J. Appl. Dyn. Syst., 8 (2009), 1218-1233.doi: 10.1137/08074307X. |
[35] |
P. A. Robinson, C. J. Rennie, J. J. Wright, H. Bahramali, E. Gordon and D. I. Rowe D, Prediction of electroencephalographic spectra from neurophysiology, Phys. Rev. E, 63 (2001), 021903.doi: 10.1103/PhysRevE.63.021903. |
[36] |
D. J. T. Liley, P. J. Cadusch and M. P. Dafilis, A spatially continuous mean field theory of electrocortical activity, Network, 13 (2002), 67-113. |
[37] |
B. Sandstede, Stability of travelling waves, in Handbook of Dynamical Systems, B. Fiedler, ed., North-Holland, Amsterdam, 2 (2002), 983-1055.doi: 10.1016/S1874-575X(02)80039-X. |
[38] |
B. Sandstede, Evans functions and nonlinear stability of travelling waves in neuronal network models, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 2693-2704.doi: 10.1142/S0218127407018695. |
[39] |
D. C. Somers, S. Nelson and M. Sur, An emergent model of orientation selectivity in cat visual cortical simple cells, J. Neurosci, 15 (1995), 5448-5465. |
[40] |
W. C. Troy, Traveling waves and synchrony in an excitable large-scale neuronal network with asymmetric connections, SIAM J. Appl. Dyn. Syst., 7 (2008), 1247-1282.doi: 10.1137/070709888. |
[41] |
H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J., 12 (1972), 1-24.doi: 10.1016/S0006-3495(72)86068-5. |
[42] |
H. R. Wilson and J. D. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetic, 13 (1973), 55-80.doi: 10.1007/BF00288786. |
[43] |
J. Y. Wu, L. Guan and Y. Tsau, Propagating activation during oscillations and evoked responses in neocortical slices, J. Neurosci., 19 (1999), 5005-5015. |
[44] |
X. Xie and M. Giese, Nonlinear dynamics of direction-selective recurrent neural media, Phys. Rev. E, 65 (2002), 051904, 11pp.doi: 10.1103/PhysRevE.65.051904. |
[45] |
L. Zhang, On stability of traveling wave solutions in synaptically coupled neuronal networks, Differential Integral Equations, 16 (2003), 513-536. |
[46] |
L. Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neuronal networks, J. Differential Equations, 197 (2004), 162-196.doi: 10.1016/S0022-0396(03)00170-0. |