• Previous Article
    Qualitative properties of ionic flows via Poisson-Nernst-Planck systems with Bikerman's local hard-sphere potential: Ion size effects
  • DCDS-B Home
  • This Issue
  • Next Article
    Existence and nonexistence of traveling pulses in a lateral inhibition neural network
August  2016, 21(6): 1757-1774. doi: 10.3934/dcdsb.2016021

Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping

1. 

UR Analysis and Control of PDE UR13ES64, Department of Mathematics, Faculty of Sciences of Monastir University of Monastir, 5019 Monastir, Tunisia

Received  July 2015 Revised  February 2016 Published  June 2016

Let a fourth and a second order evolution equations be coupled via the interface by transmission conditions, and suppose that the first one is stabilized by a localized distributed feedback. What will then be the effect of such a partial stabilization on the decay of solutions at infinity? Is the behavior of the first component sufficient to stabilize the second one? The answer given in this paper is that sufficiently smooth solutions decay logarithmically at infinity even the feedback dissipation affects an arbitrarily small open subset of the interior. The method used, in this case, is based on a frequency method, and this by combining a contradiction argument with the Carleman estimates technique to carry out a special analysis for the resolvent.
Citation: Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021
References:
[1]

K. Ammari and S. Nicaise, Stabilization of a transmission wave/plate equation,, Journal of Differential Equations, 249 (2010), 707.  doi: 10.1016/j.jde.2010.03.007.  Google Scholar

[2]

M. Alves, J. M. Rivera, M. Sepúlveda and O. V. Villágran, Exponential and the lack of exponential stability in transmission problems with localized Kelvin-Voigt dissipation,, Acta Mechanica, 219 (2011), 145.   Google Scholar

[3]

K. Ammari and G. Vodev, Boundary stabilization of the transmission problem for the Bernoulli-Euler plate equation,, CUBO a mathematical journal, 11 (2009), 39.   Google Scholar

[4]

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces,, Journal of Evolution Equation, 8 (2008), 765.  doi: 10.1007/s00028-008-0424-1.  Google Scholar

[5]

M. Bellassoued, Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization,, Asymptotic Anal., 35 (2003), 257.   Google Scholar

[6]

N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonnance au voisinage du réel,, (French) [Decay of the local energy of the wave equation for the exterior problem and absence of resonance near the real axis], 180 (1998), 1.  doi: 10.1007/BF02392877.  Google Scholar

[7]

S. Chen and K. Liu and Z. Liu, Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping,, SIAM J. Appl. Math., 59 (1998), 651.   Google Scholar

[8]

M. Daoulatli, Rate of decay of solutions of the wave equation with arbitrary localized nonlinear damping,, Nonlinear Analysis, 73 (2010), 987.  doi: 10.1016/j.na.2010.04.026.  Google Scholar

[9]

T. Duyckaerts, Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface,, Asymptot. Anal., 51 (2007), 17.   Google Scholar

[10]

M. Eller and D. Toundykov, Carleman estimates for elliptic boundary value problems with applications to the stabilization of hyperbolic systems,, Evolution Equations and Control Theory, 1 (2012), 271.  doi: 10.3934/eect.2012.1.271.  Google Scholar

[11]

I. K. Fathallah, Logarithmic decay of the energy for an hyperbolic-parabolic coupled system,, ESAIM-control Optimization and Calculus of Variations, 17 (2011), 801.  doi: 10.1051/cocv/2010026.  Google Scholar

[12]

F. Hassine, Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping,, International Journal of Control, (2015), 1.  doi: 10.1080/00207179.2015.1135509.  Google Scholar

[13]

F. Hassine, Remark on the pointwise stabilization of an elastic string equation,, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 96 (2016), 519.  doi: 10.1002/zamm.201400260.  Google Scholar

[14]

F. Hassine, Stability of elastic transmission systems with a local Kelvin-Voigt damping,, European Journal of Control, 23 (2015), 84.  doi: 10.1016/j.ejcon.2015.03.001.  Google Scholar

[15]

G. Lebeau, Équation des ondes amorties,, (French) [Damped wave equation], 19 (1996), 73.   Google Scholar

[16]

G. Lebeau and L. Robbiano, Contrôle exacte de l'équation de la chaleur,, (French) [Exact control of the heat equation], 20 (1995), 335.  doi: 10.1080/03605309508821097.  Google Scholar

[17]

G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord,, (French) [Stabilization of the wave equations by the boundary], 86 (1997), 465.  doi: 10.1215/S0012-7094-97-08614-2.  Google Scholar

[18]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity,, Arch. Ration. Mech. Anal., 148 (1999), 179.  doi: 10.1007/s002050050160.  Google Scholar

[19]

K. Liu and Z. Liu, Exponential decay of the energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping,, SIAM J. Control Optim., 36 (1998), 1086.  doi: 10.1137/S0363012996310703.  Google Scholar

[20]

C. A. Raposo, W. D. Bastos and J. A. J. Avila, A transmission problem for Euler-Bernoulli beam with Kelvin-Voigt damping,, Applied Mathematics and Information Sciences, 5 (2011), 17.   Google Scholar

[21]

J. Le Rousseau and G. Lebeau, Introduction aux inégalités de Carleman pour les opérateurs elliptiques et paraboliques,, Applications au prolongement unique et au contrôle des équations paraboliques, (2009).   Google Scholar

[22]

J. Le Rousseau, K. Léautaud and L. Robbiano, Controllability of a parabolic system with a diffusive interface,, In Séminaire Laurent Schwartz-Équations aux derivées partielles et applications, (2013), 2011.   Google Scholar

[23]

J. Le Rousseau and L. Robbiano, Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations,, Arch. Rational Mech. Anal., 195 (2010), 953.  doi: 10.1007/s00205-009-0242-9.  Google Scholar

[24]

J. Rauch, X. Zhang and E. Zuazua, Polynomial decay for hyperbolic-parabolic coupled system,, Math. Pures Appl., 84 (2005), 407.  doi: 10.1016/j.matpur.2004.09.006.  Google Scholar

[25]

L. Tebou, Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms,, Mathematical control and related fields, 2 (2012), 45.  doi: 10.3934/mcrf.2012.2.45.  Google Scholar

[26]

M. Tucsnak and G. Weiss, Observation And Control For Operator Semigroups,, Birkhäuser Verlag AG, (2009).  doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[27]

J. T. Wolka, B. Rowley and B. Lawruk, Boundary Value Problems For Elliptic System,, Cambridge University Press, (1995).   Google Scholar

[28]

X. Zhang and E. Zuazua, Asymptotic behavior of a hyperbolic-parabolic coupled system arising in fluid-structure interaction,, International Series of Numerical Mathematics, 154 (2007), 445.  doi: 10.1007/978-3-7643-7719-9_43.  Google Scholar

[29]

X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction,, Arch. Ration. Mech. Anal., 184 (2007), 49.  doi: 10.1007/s00205-006-0020-x.  Google Scholar

[30]

W. Zhang and Z. Zhang, Stabilization of transmission coupled wave and Euler-Bernoulli equations on Riemannian manifolds by nonlinear feedbacks,, J. Math. Anal. Appl., 422 (2015), 1504.  doi: 10.1016/j.jmaa.2014.09.044.  Google Scholar

show all references

References:
[1]

K. Ammari and S. Nicaise, Stabilization of a transmission wave/plate equation,, Journal of Differential Equations, 249 (2010), 707.  doi: 10.1016/j.jde.2010.03.007.  Google Scholar

[2]

M. Alves, J. M. Rivera, M. Sepúlveda and O. V. Villágran, Exponential and the lack of exponential stability in transmission problems with localized Kelvin-Voigt dissipation,, Acta Mechanica, 219 (2011), 145.   Google Scholar

[3]

K. Ammari and G. Vodev, Boundary stabilization of the transmission problem for the Bernoulli-Euler plate equation,, CUBO a mathematical journal, 11 (2009), 39.   Google Scholar

[4]

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces,, Journal of Evolution Equation, 8 (2008), 765.  doi: 10.1007/s00028-008-0424-1.  Google Scholar

[5]

M. Bellassoued, Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization,, Asymptotic Anal., 35 (2003), 257.   Google Scholar

[6]

N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonnance au voisinage du réel,, (French) [Decay of the local energy of the wave equation for the exterior problem and absence of resonance near the real axis], 180 (1998), 1.  doi: 10.1007/BF02392877.  Google Scholar

[7]

S. Chen and K. Liu and Z. Liu, Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping,, SIAM J. Appl. Math., 59 (1998), 651.   Google Scholar

[8]

M. Daoulatli, Rate of decay of solutions of the wave equation with arbitrary localized nonlinear damping,, Nonlinear Analysis, 73 (2010), 987.  doi: 10.1016/j.na.2010.04.026.  Google Scholar

[9]

T. Duyckaerts, Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface,, Asymptot. Anal., 51 (2007), 17.   Google Scholar

[10]

M. Eller and D. Toundykov, Carleman estimates for elliptic boundary value problems with applications to the stabilization of hyperbolic systems,, Evolution Equations and Control Theory, 1 (2012), 271.  doi: 10.3934/eect.2012.1.271.  Google Scholar

[11]

I. K. Fathallah, Logarithmic decay of the energy for an hyperbolic-parabolic coupled system,, ESAIM-control Optimization and Calculus of Variations, 17 (2011), 801.  doi: 10.1051/cocv/2010026.  Google Scholar

[12]

F. Hassine, Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping,, International Journal of Control, (2015), 1.  doi: 10.1080/00207179.2015.1135509.  Google Scholar

[13]

F. Hassine, Remark on the pointwise stabilization of an elastic string equation,, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 96 (2016), 519.  doi: 10.1002/zamm.201400260.  Google Scholar

[14]

F. Hassine, Stability of elastic transmission systems with a local Kelvin-Voigt damping,, European Journal of Control, 23 (2015), 84.  doi: 10.1016/j.ejcon.2015.03.001.  Google Scholar

[15]

G. Lebeau, Équation des ondes amorties,, (French) [Damped wave equation], 19 (1996), 73.   Google Scholar

[16]

G. Lebeau and L. Robbiano, Contrôle exacte de l'équation de la chaleur,, (French) [Exact control of the heat equation], 20 (1995), 335.  doi: 10.1080/03605309508821097.  Google Scholar

[17]

G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord,, (French) [Stabilization of the wave equations by the boundary], 86 (1997), 465.  doi: 10.1215/S0012-7094-97-08614-2.  Google Scholar

[18]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity,, Arch. Ration. Mech. Anal., 148 (1999), 179.  doi: 10.1007/s002050050160.  Google Scholar

[19]

K. Liu and Z. Liu, Exponential decay of the energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping,, SIAM J. Control Optim., 36 (1998), 1086.  doi: 10.1137/S0363012996310703.  Google Scholar

[20]

C. A. Raposo, W. D. Bastos and J. A. J. Avila, A transmission problem for Euler-Bernoulli beam with Kelvin-Voigt damping,, Applied Mathematics and Information Sciences, 5 (2011), 17.   Google Scholar

[21]

J. Le Rousseau and G. Lebeau, Introduction aux inégalités de Carleman pour les opérateurs elliptiques et paraboliques,, Applications au prolongement unique et au contrôle des équations paraboliques, (2009).   Google Scholar

[22]

J. Le Rousseau, K. Léautaud and L. Robbiano, Controllability of a parabolic system with a diffusive interface,, In Séminaire Laurent Schwartz-Équations aux derivées partielles et applications, (2013), 2011.   Google Scholar

[23]

J. Le Rousseau and L. Robbiano, Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations,, Arch. Rational Mech. Anal., 195 (2010), 953.  doi: 10.1007/s00205-009-0242-9.  Google Scholar

[24]

J. Rauch, X. Zhang and E. Zuazua, Polynomial decay for hyperbolic-parabolic coupled system,, Math. Pures Appl., 84 (2005), 407.  doi: 10.1016/j.matpur.2004.09.006.  Google Scholar

[25]

L. Tebou, Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms,, Mathematical control and related fields, 2 (2012), 45.  doi: 10.3934/mcrf.2012.2.45.  Google Scholar

[26]

M. Tucsnak and G. Weiss, Observation And Control For Operator Semigroups,, Birkhäuser Verlag AG, (2009).  doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[27]

J. T. Wolka, B. Rowley and B. Lawruk, Boundary Value Problems For Elliptic System,, Cambridge University Press, (1995).   Google Scholar

[28]

X. Zhang and E. Zuazua, Asymptotic behavior of a hyperbolic-parabolic coupled system arising in fluid-structure interaction,, International Series of Numerical Mathematics, 154 (2007), 445.  doi: 10.1007/978-3-7643-7719-9_43.  Google Scholar

[29]

X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction,, Arch. Ration. Mech. Anal., 184 (2007), 49.  doi: 10.1007/s00205-006-0020-x.  Google Scholar

[30]

W. Zhang and Z. Zhang, Stabilization of transmission coupled wave and Euler-Bernoulli equations on Riemannian manifolds by nonlinear feedbacks,, J. Math. Anal. Appl., 422 (2015), 1504.  doi: 10.1016/j.jmaa.2014.09.044.  Google Scholar

[1]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

[2]

Louis Tebou. Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7117-7136. doi: 10.3934/dcds.2016110

[3]

Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control & Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45

[4]

Jong Yeoul Park, Sun Hye Park. On uniform decay for the coupled Euler-Bernoulli viscoelastic system with boundary damping. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 425-436. doi: 10.3934/dcds.2005.12.425

[5]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[6]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[7]

Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247

[8]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[9]

Miroslav Bulíček, Josef Málek, K. R. Rajagopal. On Kelvin-Voigt model and its generalizations. Evolution Equations & Control Theory, 2012, 1 (1) : 17-42. doi: 10.3934/eect.2012.1.17

[10]

Mohammad M. Al-Gharabli, Aissa Guesmia, Salim A. Messaoudi. Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 159-180. doi: 10.3934/cpaa.2019009

[11]

Marcelo Moreira Cavalcanti. Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 675-695. doi: 10.3934/dcds.2002.8.675

[12]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[13]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[14]

Moez Daoulatli, Irena Lasiecka, Daniel Toundykov. Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 67-94. doi: 10.3934/dcdss.2009.2.67

[15]

Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315

[16]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

[17]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[18]

Zhiqing Liu, Zhong Bo Fang. Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term. Communications on Pure & Applied Analysis, 2020, 19 (2) : 941-966. doi: 10.3934/cpaa.2020043

[19]

Manil T. Mohan. On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020007

[20]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]