August  2016, 21(6): 1839-1858. doi: 10.3934/dcdsb.2016025

Renormalized solutions to a reaction-diffusion system applied to image denoising

1. 

College of Mathematics and Computational Science, Shenzhen University, 518060 Shenzhen, China

2. 

Department of Mathematics, Harbin Institute of Technology, 150001 Harbin, China

3. 

School of Mathematics, Jilin University, Changchun 130012

Received  December 2014 Revised  May 2016 Published  June 2016

This paper concerns the Neumann problem of a reaction-diffusion system, which has a variable exponent Laplacian term and could be applied to image denoising. It is shown that the problem admits a unique renormalized solution for each integrable initial datum.
Citation: Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025
References:
[1]

R. Aboulaich, D. Meskine and A. Souissi, New diffusion models in image processing,, Comput. Math. Appl., 56 (2008), 874.  doi: 10.1016/j.camwa.2008.01.017.  Google Scholar

[2]

F. Andreu, N. Igbida, J. M. Mazón and J. Toledo, Renormalized solutions for degenerate elliptic-parabolic problems with nonlinear dynamical boundary condtions and $L^1$-data,, Journal of differential equations, 244 (2008), 2764.  doi: 10.1016/j.jde.2008.02.022.  Google Scholar

[3]

F. Andreu, J. M. Mazón, S. Segura de León and J. Toledo, Quasi-linear elliptic and parabolic equations in $L^1$ with nonlinear boundary conditions,, Advances in mathematical sciences and applications, 7 (1997), 183.   Google Scholar

[4]

F. Andreu, J. M. Mazón, S. Segura de León and J. Toledo, Existence and uniqueness for a degenerate parabolic equation with $L^1$ data,, Trans. Amer. Math. Soc, 351 (1999), 285.  doi: 10.1090/S0002-9947-99-01981-9.  Google Scholar

[5]

F. Andreu, J. M. Mazón and J. Toledo, A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions,, Interfaces and Free Boundaries, 8 (2006), 447.  doi: 10.4171/IFB/151.  Google Scholar

[6]

M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and $L^1$-data,, J. Differential Equations, 249 (2010), 1483.  doi: 10.1016/j.jde.2010.05.011.  Google Scholar

[7]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 241.   Google Scholar

[8]

D. Blanchard and F. Murat, Renormalized solutions of nonlinear parabolic problems with $L^1$ data, existence and uniqueness,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1137.  doi: 10.1017/S0308210500026986.  Google Scholar

[9]

D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems,, J. Differential Equations, 177 (2001), 331.  doi: 10.1006/jdeq.2000.4013.  Google Scholar

[10]

L. Boccardo, F. Murat and J. P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems,, Annali di Matematica Pura ed Applicata, 152 (1998), 183.  doi: 10.1007/BF01766148.  Google Scholar

[11]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, SIAM J. Appl. Math., 66 (2006), 1383.  doi: 10.1137/050624522.  Google Scholar

[12]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Lecture Notes in Mathematics, (2011).  doi: 10.1007/978-3-642-18363-8.  Google Scholar

[13]

R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability,, Ann. Math., 130 (1989), 321.  doi: 10.2307/1971423.  Google Scholar

[14]

J. Droniou and A. Prignet, Equivalence between entropy and renormalized solutions for parabolic equations with smooth measure data,, Nonlinear Differential Equations Appl., 14 (2007), 181.  doi: 10.1007/s00030-007-5018-z.  Google Scholar

[15]

R. C. Gonzalez and R. E. Woods, Digital Image Processing,, $2^{nd}$ edition, (2002).   Google Scholar

[16]

Y. Gousseau and J. M. Morel, Are natural images of bounded variation?,, SIAM Journal on Mathematical Analysis, 33 (2001), 634.  doi: 10.1137/S0036141000371150.  Google Scholar

[17]

Z. C. Guo, Q. Liu, J. B. Sun and B. Y. Wu, Reaction-diffusion systems with $p(x)$-growth for image denoising,, Nonlinear Analysis: Real World Applications, 12 (2011), 2904.  doi: 10.1016/j.nonrwa.2011.04.015.  Google Scholar

[18]

Z. C. Guo, J. B. Sun, D. Z. Zhang and B. Y. Wu, Adaptive Perona-Malik model based on the variable exponent for image denoising,, IEEE Transactions on Image Processing, 21 (2012), 958.  doi: 10.1109/TIP.2011.2169272.  Google Scholar

[19]

Z. C. Guo, J. X. Yin and Q. Liu, On a reaction-diffusion system applied to image decomposition and restoration,, Mathematical and Computer Modelling, 53 (2011), 1336.  doi: 10.1016/j.mcm.2010.12.031.  Google Scholar

[20]

R. Landes, On the existence of weak solutions for quasilinear parabolic initial-boundary value problems,, Proc. Roy. Soc. Edinburgh Sect A, 89 (1981), 217.  doi: 10.1017/S0308210500020242.  Google Scholar

[21]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type,, American Mathematical Society: Providence, (1968).   Google Scholar

[22]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,, Dunod, (1969).   Google Scholar

[23]

I. Nyanquini and S. Ouaro, Entropy solution for nonlinear elliptic problem involving variable exponent and Fourier type boundary condition,, Afrika Matematika, 23 (2012), 205.  doi: 10.1007/s13370-011-0030-1.  Google Scholar

[24]

A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of trauncations,, Ann. Mat. Pura ed Applicata, 177 (1999), 143.  doi: 10.1007/BF02505907.  Google Scholar

[25]

A. Porretta, Regularity for entropy solutions of a class of parabolic equations with nonregular initial datum,, Dynam. Systems Appl., 7 (1998), 53.   Google Scholar

[26]

H. Redwane, Existence of a solution for a class of nonlinear parabolic systems,, Electron. J. Qual. Theory Differ. Equ, 24 (2007), 1.   Google Scholar

[27]

S. Segura de Lenón and J. Toledo, Regularity for entropy solutions of parabolic $p$-Laplacian type equations,, Publ. Mat., 43 (1999), 665.  doi: 10.5565/PUBLMAT_43299_08.  Google Scholar

[28]

Z. Q. Wu, J. Y. Yin, H. L. Li and J. N. Zhao, Nonlinear Diffusion Equations,, World Scientific Publishing Company, (2001).  doi: 10.1142/9789812799791.  Google Scholar

[29]

C. Zhang and S. L. Zhou, Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and $L^1$-data,, J. Differential Equations, 248 (2010), 1376.  doi: 10.1016/j.jde.2009.11.024.  Google Scholar

show all references

References:
[1]

R. Aboulaich, D. Meskine and A. Souissi, New diffusion models in image processing,, Comput. Math. Appl., 56 (2008), 874.  doi: 10.1016/j.camwa.2008.01.017.  Google Scholar

[2]

F. Andreu, N. Igbida, J. M. Mazón and J. Toledo, Renormalized solutions for degenerate elliptic-parabolic problems with nonlinear dynamical boundary condtions and $L^1$-data,, Journal of differential equations, 244 (2008), 2764.  doi: 10.1016/j.jde.2008.02.022.  Google Scholar

[3]

F. Andreu, J. M. Mazón, S. Segura de León and J. Toledo, Quasi-linear elliptic and parabolic equations in $L^1$ with nonlinear boundary conditions,, Advances in mathematical sciences and applications, 7 (1997), 183.   Google Scholar

[4]

F. Andreu, J. M. Mazón, S. Segura de León and J. Toledo, Existence and uniqueness for a degenerate parabolic equation with $L^1$ data,, Trans. Amer. Math. Soc, 351 (1999), 285.  doi: 10.1090/S0002-9947-99-01981-9.  Google Scholar

[5]

F. Andreu, J. M. Mazón and J. Toledo, A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions,, Interfaces and Free Boundaries, 8 (2006), 447.  doi: 10.4171/IFB/151.  Google Scholar

[6]

M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and $L^1$-data,, J. Differential Equations, 249 (2010), 1483.  doi: 10.1016/j.jde.2010.05.011.  Google Scholar

[7]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 241.   Google Scholar

[8]

D. Blanchard and F. Murat, Renormalized solutions of nonlinear parabolic problems with $L^1$ data, existence and uniqueness,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1137.  doi: 10.1017/S0308210500026986.  Google Scholar

[9]

D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems,, J. Differential Equations, 177 (2001), 331.  doi: 10.1006/jdeq.2000.4013.  Google Scholar

[10]

L. Boccardo, F. Murat and J. P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems,, Annali di Matematica Pura ed Applicata, 152 (1998), 183.  doi: 10.1007/BF01766148.  Google Scholar

[11]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, SIAM J. Appl. Math., 66 (2006), 1383.  doi: 10.1137/050624522.  Google Scholar

[12]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Lecture Notes in Mathematics, (2011).  doi: 10.1007/978-3-642-18363-8.  Google Scholar

[13]

R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability,, Ann. Math., 130 (1989), 321.  doi: 10.2307/1971423.  Google Scholar

[14]

J. Droniou and A. Prignet, Equivalence between entropy and renormalized solutions for parabolic equations with smooth measure data,, Nonlinear Differential Equations Appl., 14 (2007), 181.  doi: 10.1007/s00030-007-5018-z.  Google Scholar

[15]

R. C. Gonzalez and R. E. Woods, Digital Image Processing,, $2^{nd}$ edition, (2002).   Google Scholar

[16]

Y. Gousseau and J. M. Morel, Are natural images of bounded variation?,, SIAM Journal on Mathematical Analysis, 33 (2001), 634.  doi: 10.1137/S0036141000371150.  Google Scholar

[17]

Z. C. Guo, Q. Liu, J. B. Sun and B. Y. Wu, Reaction-diffusion systems with $p(x)$-growth for image denoising,, Nonlinear Analysis: Real World Applications, 12 (2011), 2904.  doi: 10.1016/j.nonrwa.2011.04.015.  Google Scholar

[18]

Z. C. Guo, J. B. Sun, D. Z. Zhang and B. Y. Wu, Adaptive Perona-Malik model based on the variable exponent for image denoising,, IEEE Transactions on Image Processing, 21 (2012), 958.  doi: 10.1109/TIP.2011.2169272.  Google Scholar

[19]

Z. C. Guo, J. X. Yin and Q. Liu, On a reaction-diffusion system applied to image decomposition and restoration,, Mathematical and Computer Modelling, 53 (2011), 1336.  doi: 10.1016/j.mcm.2010.12.031.  Google Scholar

[20]

R. Landes, On the existence of weak solutions for quasilinear parabolic initial-boundary value problems,, Proc. Roy. Soc. Edinburgh Sect A, 89 (1981), 217.  doi: 10.1017/S0308210500020242.  Google Scholar

[21]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type,, American Mathematical Society: Providence, (1968).   Google Scholar

[22]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,, Dunod, (1969).   Google Scholar

[23]

I. Nyanquini and S. Ouaro, Entropy solution for nonlinear elliptic problem involving variable exponent and Fourier type boundary condition,, Afrika Matematika, 23 (2012), 205.  doi: 10.1007/s13370-011-0030-1.  Google Scholar

[24]

A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of trauncations,, Ann. Mat. Pura ed Applicata, 177 (1999), 143.  doi: 10.1007/BF02505907.  Google Scholar

[25]

A. Porretta, Regularity for entropy solutions of a class of parabolic equations with nonregular initial datum,, Dynam. Systems Appl., 7 (1998), 53.   Google Scholar

[26]

H. Redwane, Existence of a solution for a class of nonlinear parabolic systems,, Electron. J. Qual. Theory Differ. Equ, 24 (2007), 1.   Google Scholar

[27]

S. Segura de Lenón and J. Toledo, Regularity for entropy solutions of parabolic $p$-Laplacian type equations,, Publ. Mat., 43 (1999), 665.  doi: 10.5565/PUBLMAT_43299_08.  Google Scholar

[28]

Z. Q. Wu, J. Y. Yin, H. L. Li and J. N. Zhao, Nonlinear Diffusion Equations,, World Scientific Publishing Company, (2001).  doi: 10.1142/9789812799791.  Google Scholar

[29]

C. Zhang and S. L. Zhou, Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and $L^1$-data,, J. Differential Equations, 248 (2010), 1376.  doi: 10.1016/j.jde.2009.11.024.  Google Scholar

[1]

Mostafa Bendahmane, Kenneth H. Karlsen. Renormalized solutions of an anisotropic reaction-diffusion-advection system with $L^1$ data. Communications on Pure & Applied Analysis, 2006, 5 (4) : 733-762. doi: 10.3934/cpaa.2006.5.733

[2]

Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106

[3]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[4]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[5]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[6]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[7]

Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169

[8]

Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227

[9]

W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893

[10]

José-Francisco Rodrigues, Lisa Santos. On a constrained reaction-diffusion system related to multiphase problems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 299-319. doi: 10.3934/dcds.2009.25.299

[11]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[12]

Sebastian Aniţa, Vincenzo Capasso. Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1673-1684. doi: 10.3934/dcdsb.2012.17.1673

[13]

Michaël Bages, Patrick Martinez. Existence of pulsating waves in a monostable reaction-diffusion system in solid combustion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 817-869. doi: 10.3934/dcdsb.2010.14.817

[14]

José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure & Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85

[15]

Bo Li, Xiaoyan Zhang. Steady states of a Sel'kov-Schnakenberg reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1009-1023. doi: 10.3934/dcdss.2017053

[16]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[17]

Bedr'Eddine Ainseba, Mostafa Bendahmane, Yuan He. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Networks & Heterogeneous Media, 2015, 10 (2) : 369-385. doi: 10.3934/nhm.2015.10.369

[18]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. Determination of initial data for a reaction-diffusion system with variable coefficients. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 771-801. doi: 10.3934/dcds.2019032

[19]

Hua Nie, Sze-Bi Hsu, Feng-Bin Wang. Global dynamics of a reaction-diffusion system with intraguild predation and internal storage. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019194

[20]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020049

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]