August  2016, 21(6): 1839-1858. doi: 10.3934/dcdsb.2016025

Renormalized solutions to a reaction-diffusion system applied to image denoising

1. 

College of Mathematics and Computational Science, Shenzhen University, 518060 Shenzhen, China

2. 

Department of Mathematics, Harbin Institute of Technology, 150001 Harbin, China

3. 

School of Mathematics, Jilin University, Changchun 130012

Received  December 2014 Revised  May 2016 Published  June 2016

This paper concerns the Neumann problem of a reaction-diffusion system, which has a variable exponent Laplacian term and could be applied to image denoising. It is shown that the problem admits a unique renormalized solution for each integrable initial datum.
Citation: Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025
References:
[1]

R. Aboulaich, D. Meskine and A. Souissi, New diffusion models in image processing,, Comput. Math. Appl., 56 (2008), 874.  doi: 10.1016/j.camwa.2008.01.017.  Google Scholar

[2]

F. Andreu, N. Igbida, J. M. Mazón and J. Toledo, Renormalized solutions for degenerate elliptic-parabolic problems with nonlinear dynamical boundary condtions and $L^1$-data,, Journal of differential equations, 244 (2008), 2764.  doi: 10.1016/j.jde.2008.02.022.  Google Scholar

[3]

F. Andreu, J. M. Mazón, S. Segura de León and J. Toledo, Quasi-linear elliptic and parabolic equations in $L^1$ with nonlinear boundary conditions,, Advances in mathematical sciences and applications, 7 (1997), 183.   Google Scholar

[4]

F. Andreu, J. M. Mazón, S. Segura de León and J. Toledo, Existence and uniqueness for a degenerate parabolic equation with $L^1$ data,, Trans. Amer. Math. Soc, 351 (1999), 285.  doi: 10.1090/S0002-9947-99-01981-9.  Google Scholar

[5]

F. Andreu, J. M. Mazón and J. Toledo, A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions,, Interfaces and Free Boundaries, 8 (2006), 447.  doi: 10.4171/IFB/151.  Google Scholar

[6]

M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and $L^1$-data,, J. Differential Equations, 249 (2010), 1483.  doi: 10.1016/j.jde.2010.05.011.  Google Scholar

[7]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 241.   Google Scholar

[8]

D. Blanchard and F. Murat, Renormalized solutions of nonlinear parabolic problems with $L^1$ data, existence and uniqueness,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1137.  doi: 10.1017/S0308210500026986.  Google Scholar

[9]

D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems,, J. Differential Equations, 177 (2001), 331.  doi: 10.1006/jdeq.2000.4013.  Google Scholar

[10]

L. Boccardo, F. Murat and J. P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems,, Annali di Matematica Pura ed Applicata, 152 (1998), 183.  doi: 10.1007/BF01766148.  Google Scholar

[11]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, SIAM J. Appl. Math., 66 (2006), 1383.  doi: 10.1137/050624522.  Google Scholar

[12]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Lecture Notes in Mathematics, (2011).  doi: 10.1007/978-3-642-18363-8.  Google Scholar

[13]

R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability,, Ann. Math., 130 (1989), 321.  doi: 10.2307/1971423.  Google Scholar

[14]

J. Droniou and A. Prignet, Equivalence between entropy and renormalized solutions for parabolic equations with smooth measure data,, Nonlinear Differential Equations Appl., 14 (2007), 181.  doi: 10.1007/s00030-007-5018-z.  Google Scholar

[15]

R. C. Gonzalez and R. E. Woods, Digital Image Processing,, $2^{nd}$ edition, (2002).   Google Scholar

[16]

Y. Gousseau and J. M. Morel, Are natural images of bounded variation?,, SIAM Journal on Mathematical Analysis, 33 (2001), 634.  doi: 10.1137/S0036141000371150.  Google Scholar

[17]

Z. C. Guo, Q. Liu, J. B. Sun and B. Y. Wu, Reaction-diffusion systems with $p(x)$-growth for image denoising,, Nonlinear Analysis: Real World Applications, 12 (2011), 2904.  doi: 10.1016/j.nonrwa.2011.04.015.  Google Scholar

[18]

Z. C. Guo, J. B. Sun, D. Z. Zhang and B. Y. Wu, Adaptive Perona-Malik model based on the variable exponent for image denoising,, IEEE Transactions on Image Processing, 21 (2012), 958.  doi: 10.1109/TIP.2011.2169272.  Google Scholar

[19]

Z. C. Guo, J. X. Yin and Q. Liu, On a reaction-diffusion system applied to image decomposition and restoration,, Mathematical and Computer Modelling, 53 (2011), 1336.  doi: 10.1016/j.mcm.2010.12.031.  Google Scholar

[20]

R. Landes, On the existence of weak solutions for quasilinear parabolic initial-boundary value problems,, Proc. Roy. Soc. Edinburgh Sect A, 89 (1981), 217.  doi: 10.1017/S0308210500020242.  Google Scholar

[21]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type,, American Mathematical Society: Providence, (1968).   Google Scholar

[22]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,, Dunod, (1969).   Google Scholar

[23]

I. Nyanquini and S. Ouaro, Entropy solution for nonlinear elliptic problem involving variable exponent and Fourier type boundary condition,, Afrika Matematika, 23 (2012), 205.  doi: 10.1007/s13370-011-0030-1.  Google Scholar

[24]

A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of trauncations,, Ann. Mat. Pura ed Applicata, 177 (1999), 143.  doi: 10.1007/BF02505907.  Google Scholar

[25]

A. Porretta, Regularity for entropy solutions of a class of parabolic equations with nonregular initial datum,, Dynam. Systems Appl., 7 (1998), 53.   Google Scholar

[26]

H. Redwane, Existence of a solution for a class of nonlinear parabolic systems,, Electron. J. Qual. Theory Differ. Equ, 24 (2007), 1.   Google Scholar

[27]

S. Segura de Lenón and J. Toledo, Regularity for entropy solutions of parabolic $p$-Laplacian type equations,, Publ. Mat., 43 (1999), 665.  doi: 10.5565/PUBLMAT_43299_08.  Google Scholar

[28]

Z. Q. Wu, J. Y. Yin, H. L. Li and J. N. Zhao, Nonlinear Diffusion Equations,, World Scientific Publishing Company, (2001).  doi: 10.1142/9789812799791.  Google Scholar

[29]

C. Zhang and S. L. Zhou, Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and $L^1$-data,, J. Differential Equations, 248 (2010), 1376.  doi: 10.1016/j.jde.2009.11.024.  Google Scholar

show all references

References:
[1]

R. Aboulaich, D. Meskine and A. Souissi, New diffusion models in image processing,, Comput. Math. Appl., 56 (2008), 874.  doi: 10.1016/j.camwa.2008.01.017.  Google Scholar

[2]

F. Andreu, N. Igbida, J. M. Mazón and J. Toledo, Renormalized solutions for degenerate elliptic-parabolic problems with nonlinear dynamical boundary condtions and $L^1$-data,, Journal of differential equations, 244 (2008), 2764.  doi: 10.1016/j.jde.2008.02.022.  Google Scholar

[3]

F. Andreu, J. M. Mazón, S. Segura de León and J. Toledo, Quasi-linear elliptic and parabolic equations in $L^1$ with nonlinear boundary conditions,, Advances in mathematical sciences and applications, 7 (1997), 183.   Google Scholar

[4]

F. Andreu, J. M. Mazón, S. Segura de León and J. Toledo, Existence and uniqueness for a degenerate parabolic equation with $L^1$ data,, Trans. Amer. Math. Soc, 351 (1999), 285.  doi: 10.1090/S0002-9947-99-01981-9.  Google Scholar

[5]

F. Andreu, J. M. Mazón and J. Toledo, A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions,, Interfaces and Free Boundaries, 8 (2006), 447.  doi: 10.4171/IFB/151.  Google Scholar

[6]

M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and $L^1$-data,, J. Differential Equations, 249 (2010), 1483.  doi: 10.1016/j.jde.2010.05.011.  Google Scholar

[7]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 241.   Google Scholar

[8]

D. Blanchard and F. Murat, Renormalized solutions of nonlinear parabolic problems with $L^1$ data, existence and uniqueness,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1137.  doi: 10.1017/S0308210500026986.  Google Scholar

[9]

D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems,, J. Differential Equations, 177 (2001), 331.  doi: 10.1006/jdeq.2000.4013.  Google Scholar

[10]

L. Boccardo, F. Murat and J. P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems,, Annali di Matematica Pura ed Applicata, 152 (1998), 183.  doi: 10.1007/BF01766148.  Google Scholar

[11]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, SIAM J. Appl. Math., 66 (2006), 1383.  doi: 10.1137/050624522.  Google Scholar

[12]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Lecture Notes in Mathematics, (2011).  doi: 10.1007/978-3-642-18363-8.  Google Scholar

[13]

R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability,, Ann. Math., 130 (1989), 321.  doi: 10.2307/1971423.  Google Scholar

[14]

J. Droniou and A. Prignet, Equivalence between entropy and renormalized solutions for parabolic equations with smooth measure data,, Nonlinear Differential Equations Appl., 14 (2007), 181.  doi: 10.1007/s00030-007-5018-z.  Google Scholar

[15]

R. C. Gonzalez and R. E. Woods, Digital Image Processing,, $2^{nd}$ edition, (2002).   Google Scholar

[16]

Y. Gousseau and J. M. Morel, Are natural images of bounded variation?,, SIAM Journal on Mathematical Analysis, 33 (2001), 634.  doi: 10.1137/S0036141000371150.  Google Scholar

[17]

Z. C. Guo, Q. Liu, J. B. Sun and B. Y. Wu, Reaction-diffusion systems with $p(x)$-growth for image denoising,, Nonlinear Analysis: Real World Applications, 12 (2011), 2904.  doi: 10.1016/j.nonrwa.2011.04.015.  Google Scholar

[18]

Z. C. Guo, J. B. Sun, D. Z. Zhang and B. Y. Wu, Adaptive Perona-Malik model based on the variable exponent for image denoising,, IEEE Transactions on Image Processing, 21 (2012), 958.  doi: 10.1109/TIP.2011.2169272.  Google Scholar

[19]

Z. C. Guo, J. X. Yin and Q. Liu, On a reaction-diffusion system applied to image decomposition and restoration,, Mathematical and Computer Modelling, 53 (2011), 1336.  doi: 10.1016/j.mcm.2010.12.031.  Google Scholar

[20]

R. Landes, On the existence of weak solutions for quasilinear parabolic initial-boundary value problems,, Proc. Roy. Soc. Edinburgh Sect A, 89 (1981), 217.  doi: 10.1017/S0308210500020242.  Google Scholar

[21]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type,, American Mathematical Society: Providence, (1968).   Google Scholar

[22]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,, Dunod, (1969).   Google Scholar

[23]

I. Nyanquini and S. Ouaro, Entropy solution for nonlinear elliptic problem involving variable exponent and Fourier type boundary condition,, Afrika Matematika, 23 (2012), 205.  doi: 10.1007/s13370-011-0030-1.  Google Scholar

[24]

A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of trauncations,, Ann. Mat. Pura ed Applicata, 177 (1999), 143.  doi: 10.1007/BF02505907.  Google Scholar

[25]

A. Porretta, Regularity for entropy solutions of a class of parabolic equations with nonregular initial datum,, Dynam. Systems Appl., 7 (1998), 53.   Google Scholar

[26]

H. Redwane, Existence of a solution for a class of nonlinear parabolic systems,, Electron. J. Qual. Theory Differ. Equ, 24 (2007), 1.   Google Scholar

[27]

S. Segura de Lenón and J. Toledo, Regularity for entropy solutions of parabolic $p$-Laplacian type equations,, Publ. Mat., 43 (1999), 665.  doi: 10.5565/PUBLMAT_43299_08.  Google Scholar

[28]

Z. Q. Wu, J. Y. Yin, H. L. Li and J. N. Zhao, Nonlinear Diffusion Equations,, World Scientific Publishing Company, (2001).  doi: 10.1142/9789812799791.  Google Scholar

[29]

C. Zhang and S. L. Zhou, Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and $L^1$-data,, J. Differential Equations, 248 (2010), 1376.  doi: 10.1016/j.jde.2009.11.024.  Google Scholar

[1]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[4]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[5]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[6]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[7]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[8]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[9]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[10]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[13]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[14]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[16]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[17]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[18]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]