August  2016, 21(6): 1859-1867. doi: 10.3934/dcdsb.2016026

Hopf periodic orbits for a ratio--dependent predator--prey model with stage structure

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia

2. 

Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA, Departamento de Matemática, Universidad del Bio Bio, Concepción, Avda. Collao 1202, Chile

Received  October 2014 Revised  March 2016 Published  June 2016

A ratio--dependent predator-prey model with stage structure for prey was investigated in [8]. There the authors mentioned that they were unable to show if such a model admits limit cycles when the unique equilibrium point $E^*$ at the positive octant is unstable.
    Here we characterize the existence of Hopf bifurcations for the systems. In particular we provide a positive answer to the above question showing for such models the existence of small--amplitude Hopf limit cycles being the equilibrium point $E^*$ unstable.
Citation: Jaume Llibre, Claudio Vidal. Hopf periodic orbits for a ratio--dependent predator--prey model with stage structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1859-1867. doi: 10.3934/dcdsb.2016026
References:
[1]

W. G. Aiello and H. I. Freedman, A time delay model of single-species growth with stage structure,, Math. Biosci., 101 (1990), 139.  doi: 10.1016/0025-5564(90)90019-U.  Google Scholar

[2]

W. G. Aiello, H. I. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay,, SIAM J. Appl. Math., 52 (1992), 855.  doi: 10.1137/0152048.  Google Scholar

[3]

Y. Kuznetsov, Elements of Applied Bifurcation Theory,, Applied Mathematical Sciences, 112 (2004).  doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[4]

Z. Li, M. Han and F. Chen, Global stability of a predator-prey system with stage structure and mutual interference,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 173.  doi: 10.3934/dcdsb.2014.19.173.  Google Scholar

[5]

K. G. Magnusson, Destabilizing effect of cannibalism on a structured predator-prey system,, Math. Biosci., 155 (1999), 61.  doi: 10.1016/S0025-5564(98)10051-2.  Google Scholar

[6]

W. Wang and L. Chen, A predator-prey system with stage structure for predator,, Comput. Math. Appl., 33 (1997), 83.  doi: 10.1016/S0898-1221(97)00056-4.  Google Scholar

[7]

R. Xu, Global convergence of a predator-prey model with stage structure and spatio-temporal delay,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 273.  doi: 10.3934/dcdsb.2011.15.273.  Google Scholar

[8]

R. Xu, M. A. J. Chaplain and F. A. Davidson, Persistence and global stability of a ratio-dependent predator-prey model with stage structure,, Appl. Math. Comput., 158 (2004), 729.  doi: 10.1016/j.amc.2003.10.012.  Google Scholar

[9]

X. Zhang and L. Chen, The stage-structured predator-prey model and optimal harvesting policy,, Math. Biosci., 168 (2000), 201.  doi: 10.1016/S0025-5564(00)00033-X.  Google Scholar

show all references

References:
[1]

W. G. Aiello and H. I. Freedman, A time delay model of single-species growth with stage structure,, Math. Biosci., 101 (1990), 139.  doi: 10.1016/0025-5564(90)90019-U.  Google Scholar

[2]

W. G. Aiello, H. I. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay,, SIAM J. Appl. Math., 52 (1992), 855.  doi: 10.1137/0152048.  Google Scholar

[3]

Y. Kuznetsov, Elements of Applied Bifurcation Theory,, Applied Mathematical Sciences, 112 (2004).  doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[4]

Z. Li, M. Han and F. Chen, Global stability of a predator-prey system with stage structure and mutual interference,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 173.  doi: 10.3934/dcdsb.2014.19.173.  Google Scholar

[5]

K. G. Magnusson, Destabilizing effect of cannibalism on a structured predator-prey system,, Math. Biosci., 155 (1999), 61.  doi: 10.1016/S0025-5564(98)10051-2.  Google Scholar

[6]

W. Wang and L. Chen, A predator-prey system with stage structure for predator,, Comput. Math. Appl., 33 (1997), 83.  doi: 10.1016/S0898-1221(97)00056-4.  Google Scholar

[7]

R. Xu, Global convergence of a predator-prey model with stage structure and spatio-temporal delay,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 273.  doi: 10.3934/dcdsb.2011.15.273.  Google Scholar

[8]

R. Xu, M. A. J. Chaplain and F. A. Davidson, Persistence and global stability of a ratio-dependent predator-prey model with stage structure,, Appl. Math. Comput., 158 (2004), 729.  doi: 10.1016/j.amc.2003.10.012.  Google Scholar

[9]

X. Zhang and L. Chen, The stage-structured predator-prey model and optimal harvesting policy,, Math. Biosci., 168 (2000), 201.  doi: 10.1016/S0025-5564(00)00033-X.  Google Scholar

[1]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[2]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

[3]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[4]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[5]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[6]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[7]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[8]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[9]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[10]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[11]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[12]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[13]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[14]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[15]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[16]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[17]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[18]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[19]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[20]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]