August  2016, 21(6): 1859-1867. doi: 10.3934/dcdsb.2016026

Hopf periodic orbits for a ratio--dependent predator--prey model with stage structure

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia

2. 

Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA, Departamento de Matemática, Universidad del Bio Bio, Concepción, Avda. Collao 1202, Chile

Received  October 2014 Revised  March 2016 Published  June 2016

A ratio--dependent predator-prey model with stage structure for prey was investigated in [8]. There the authors mentioned that they were unable to show if such a model admits limit cycles when the unique equilibrium point $E^*$ at the positive octant is unstable.
    Here we characterize the existence of Hopf bifurcations for the systems. In particular we provide a positive answer to the above question showing for such models the existence of small--amplitude Hopf limit cycles being the equilibrium point $E^*$ unstable.
Citation: Jaume Llibre, Claudio Vidal. Hopf periodic orbits for a ratio--dependent predator--prey model with stage structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1859-1867. doi: 10.3934/dcdsb.2016026
References:
[1]

W. G. Aiello and H. I. Freedman, A time delay model of single-species growth with stage structure,, Math. Biosci., 101 (1990), 139. doi: 10.1016/0025-5564(90)90019-U. Google Scholar

[2]

W. G. Aiello, H. I. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay,, SIAM J. Appl. Math., 52 (1992), 855. doi: 10.1137/0152048. Google Scholar

[3]

Y. Kuznetsov, Elements of Applied Bifurcation Theory,, Applied Mathematical Sciences, 112 (2004). doi: 10.1007/978-1-4757-3978-7. Google Scholar

[4]

Z. Li, M. Han and F. Chen, Global stability of a predator-prey system with stage structure and mutual interference,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 173. doi: 10.3934/dcdsb.2014.19.173. Google Scholar

[5]

K. G. Magnusson, Destabilizing effect of cannibalism on a structured predator-prey system,, Math. Biosci., 155 (1999), 61. doi: 10.1016/S0025-5564(98)10051-2. Google Scholar

[6]

W. Wang and L. Chen, A predator-prey system with stage structure for predator,, Comput. Math. Appl., 33 (1997), 83. doi: 10.1016/S0898-1221(97)00056-4. Google Scholar

[7]

R. Xu, Global convergence of a predator-prey model with stage structure and spatio-temporal delay,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 273. doi: 10.3934/dcdsb.2011.15.273. Google Scholar

[8]

R. Xu, M. A. J. Chaplain and F. A. Davidson, Persistence and global stability of a ratio-dependent predator-prey model with stage structure,, Appl. Math. Comput., 158 (2004), 729. doi: 10.1016/j.amc.2003.10.012. Google Scholar

[9]

X. Zhang and L. Chen, The stage-structured predator-prey model and optimal harvesting policy,, Math. Biosci., 168 (2000), 201. doi: 10.1016/S0025-5564(00)00033-X. Google Scholar

show all references

References:
[1]

W. G. Aiello and H. I. Freedman, A time delay model of single-species growth with stage structure,, Math. Biosci., 101 (1990), 139. doi: 10.1016/0025-5564(90)90019-U. Google Scholar

[2]

W. G. Aiello, H. I. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay,, SIAM J. Appl. Math., 52 (1992), 855. doi: 10.1137/0152048. Google Scholar

[3]

Y. Kuznetsov, Elements of Applied Bifurcation Theory,, Applied Mathematical Sciences, 112 (2004). doi: 10.1007/978-1-4757-3978-7. Google Scholar

[4]

Z. Li, M. Han and F. Chen, Global stability of a predator-prey system with stage structure and mutual interference,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 173. doi: 10.3934/dcdsb.2014.19.173. Google Scholar

[5]

K. G. Magnusson, Destabilizing effect of cannibalism on a structured predator-prey system,, Math. Biosci., 155 (1999), 61. doi: 10.1016/S0025-5564(98)10051-2. Google Scholar

[6]

W. Wang and L. Chen, A predator-prey system with stage structure for predator,, Comput. Math. Appl., 33 (1997), 83. doi: 10.1016/S0898-1221(97)00056-4. Google Scholar

[7]

R. Xu, Global convergence of a predator-prey model with stage structure and spatio-temporal delay,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 273. doi: 10.3934/dcdsb.2011.15.273. Google Scholar

[8]

R. Xu, M. A. J. Chaplain and F. A. Davidson, Persistence and global stability of a ratio-dependent predator-prey model with stage structure,, Appl. Math. Comput., 158 (2004), 729. doi: 10.1016/j.amc.2003.10.012. Google Scholar

[9]

X. Zhang and L. Chen, The stage-structured predator-prey model and optimal harvesting policy,, Math. Biosci., 168 (2000), 201. doi: 10.1016/S0025-5564(00)00033-X. Google Scholar

[1]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[2]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[3]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[4]

Xinyu Song, Liming Cai, U. Neumann. Ratio-dependent predator-prey system with stage structure for prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 747-758. doi: 10.3934/dcdsb.2004.4.747

[5]

Benjamin Leard, Catherine Lewis, Jorge Rebaza. Dynamics of ratio-dependent Predator-Prey models with nonconstant harvesting. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 303-315. doi: 10.3934/dcdss.2008.1.303

[6]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[7]

Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321

[8]

Michael Y. Li, Xihui Lin, Hao Wang. Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 747-760. doi: 10.3934/dcdsb.2014.19.747

[9]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[10]

Jicai Huang, Yijun Gong, Shigui Ruan. Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2101-2121. doi: 10.3934/dcdsb.2013.18.2101

[11]

Qing Zhu, Huaqin Peng, Xiaoxiao Zheng, Huafeng Xiao. Bifurcation analysis of a stage-structured predator-prey model with prey refuge. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2195-2209. doi: 10.3934/dcdss.2019141

[12]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[13]

Jaume Llibre, Claudio A. Buzzi, Paulo R. da Silva. 3-dimensional Hopf bifurcation via averaging theory. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 529-540. doi: 10.3934/dcds.2007.17.529

[14]

Jaume Llibre, Amar Makhlouf, Sabrina Badi. $3$ - dimensional Hopf bifurcation via averaging theory of second order. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1287-1295. doi: 10.3934/dcds.2009.25.1287

[15]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[16]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[17]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[18]

Inkyung Ahn, Wonlyul Ko, Kimun Ryu. Asymptotic behavior of a ratio-dependent predator-prey system with disease in the prey. Conference Publications, 2013, 2013 (special) : 11-19. doi: 10.3934/proc.2013.2013.11

[19]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

[20]

Ronald E. Mickens. Analysis of a new class of predator-prey model. Conference Publications, 2001, 2001 (Special) : 265-269. doi: 10.3934/proc.2001.2001.265

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]