Citation: |
[1] |
E. Beretta and Y. Kuang, Modeling and analysis of marine bacteriophage infection, Math. Biosci., 149 (1998), 57-76.doi: 10.1016/S0025-5564(97)10015-3. |
[2] |
G. Butler, H. I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Am. Math. Soc., 96 (1986), 425-430.doi: 10.1090/S0002-9939-1986-0822433-4. |
[3] |
G. Butler and P. Waltman, Persistence in dynamical systems, J. Differ. Equ., 63 (1986), 255-263.doi: 10.1016/0022-0396(86)90049-5. |
[4] |
P. DeLeenheer and S. S. Pilyugin, Multistrain virus dynamics with mutations: A global analysis, Math. Med. Biol., 25 (2008), 285-322. |
[5] |
K. Falk, E. Namork, E. Rimstad, S. Mjaaland and B. H. Dannevig, Characterization of infectious salmon anemia virus, an orthomyxo-like virus isolated from Atlantic salmon (Salmo salar L.), J. Virol., 71 (1997), 9016-9023. |
[6] |
A. Fonda, Uniformly persistent semidynamical systems, Proc. Am. Math. Soc., 104 (1988), 111-116.doi: 10.1090/S0002-9939-1988-0958053-2. |
[7] |
H. I. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set, J. Dyn. Differ. Equ., 6 (1994), 583-600.doi: 10.1007/BF02218848. |
[8] |
B. Garay, Uniform persistence and chain recurrence, J. Math. Anal. Appl., 139 (1989), 372-381.doi: 10.1016/0022-247X(89)90114-5. |
[9] |
M. G. Godoy, et al., Infectious salmon anemia virus (ISAV) in Chilean Atlantic salmon (Salmo salar) aquaculture: emergence of low pathogenic ISAV-HPR0 and re-emergence of ISAV-HPR$\Delta$: HPR3 and HPR14, Virol. J., 10 (2013), p344. |
[10] |
J. K. Hale and H. Koçak, Dynamics and Bifurcations, Volume 3, Springer-Verlag, New York, 1991.doi: 10.1007/978-1-4612-4426-4. |
[11] |
J. A. P. Heesterbeek, A brief history of $\mathcalR_0$ and a recipe for its calculation, Acta Biotheor., 50 (2002), 189-204. |
[12] |
J. Hofbauer and J. W.-H. So., Uniform persistence and repellers for maps, Proc. Am. Math. Soc., 107 (1989), 1137-1142.doi: 10.1090/S0002-9939-1989-0984816-4. |
[13] |
V. Hutson and K. Schmitt, Permanence and the dynamics of biological systems, Math. Biosci., 111 (1992), 1-71.doi: 10.1016/0025-5564(92)90078-B. |
[14] |
M. Krkosek, M. A. Lewis and J. P. Volpe, Transmission dynamics of parasitic sea lice from farm to wild salmon, Proc. R. Soc. B, 272 (2005), 689-696.doi: 10.1098/rspb.2004.3027. |
[15] |
F. O. Mardones, A. M. Perez and T. E. Carpenter, Epidemiological investigation of the re-emergence of infectious salmon anemia virus in Chile, Dis. Aquat. Organ., 84 (2009), 105-114. |
[16] |
M. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, Oxford, UK, 2000. |
[17] |
A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-I: Dynamics in vivo, SIAM Rev., 41 (1999), 3-44.doi: 10.1137/S0036144598335107. |
[18] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence, RI, 1995. |
[19] |
H. L. Smith and P. DeLeenheer, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 1313-1327.doi: 10.1137/S0036139902406905. |
[20] |
H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, New York, 1995.doi: 10.1017/CBO9780511530043. |
[21] |
H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an epidemic model), SIAM J. Math. Anal., 24 (1993), 407-435.doi: 10.1137/0524026. |
[22] |
H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, 2003. |
[23] |
S. Vike, S. Nylund and A. Nylund, ISA virus in Chile: Evidence of vertical transmission, Arch. Virol., 154 (2009), 1-8.doi: 10.1007/s00705-008-0251-2. |
[24] |
P. Waltman, A brief history of persistence in dynamical systems, in Delay differential equations and and dynamical systems (eds. S. Busenberg and M. Martelli), Lecture Notes in Mathematics, Volume 1475, Springer, (1991), 31-40.doi: 10.1007/BFb0083477. |