August  2016, 21(6): 1917-1936. doi: 10.3934/dcdsb.2016029

Nonlinear stability of stationary points in the problem of Robe

1. 

Department Computer Science, University of Cincinnati, Cincinnati, Ohio 45221-0025, United States

2. 

Departamento de Matemática, Universidade Federal de Sergipe, São Cristovão-SE, CEP. 49100-000, Brazil

Received  August 2015 Revised  February 2016 Published  June 2016

In 1977 Robe considered a modification of the Restricted Three Body Problem, where one of the primaries is a shell filled with an incompressible liquid. The motion of the small body of negligible mass takes place inside this sphere and is therefore affected by the buoyancy force of the liquid. We investigate the existence and stability of the equilibrium points in the planar circular problem and discuss the range of the parameters for which the problem has a physical meaning.
    Our main contribution is to establish the Lyapunov stability for the equilibrium point at the center of the shell. We achieve this by putting the Hamiltonian function of Robe's problem into its normal form and then use the theorems of Arnol'd, Markeev and Sokol'skii. Resonance cases and some exceptional cases require special treatment.
Citation: Dieter Schmidt, Lucas Valeriano. Nonlinear stability of stationary points in the problem of Robe. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1917-1936. doi: 10.3934/dcdsb.2016029
References:
[1]

C. M. Giordani, A. R. Plastino and A. Plastino, Robe's restricted three body-problem with drag,, Celest. Mech. & Dyn. Astr., 66 (1996), 229.  doi: 10.1007/BF00054966.  Google Scholar

[2]

P. P. Hallan and K. B. Mangang, Non linear stability of equilibrium point in the Robe's restricted circular three body problem,, Indian J. pure. appl. Math., 38 (2007), 17.   Google Scholar

[3]

P. P. Hallan and N. Rana, The existence and stability of equilibrium points in the Robe's restricted three-body problem,, Celest. Mech. & Dyn. Astr., 79 (2001), 145.  doi: 10.1023/A:1011173320720.  Google Scholar

[4]

A. P. Markeev, Linear Hamiltonian Systems and Some Applications to the Problem of Stability of Motion of Satellites Relative to the Center of Mass,, R&C Dynamics, (2009).   Google Scholar

[5]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem,, Springer, (2009).   Google Scholar

[6]

K. R. Meyer, J. Palacián and P. Yanguas, Stability of a Hamiltonian system in a limiting case,, J. Appl. Math. Mech., 41 (2012), 20.   Google Scholar

[7]

K. R. Meyer and D. S. Schmidt, The stability of the Lagrange triangular point and a theorem of Arnol'd,, Journal of Differential equations, 62 (1986), 222.  doi: 10.1016/0022-0396(86)90098-7.  Google Scholar

[8]

A. R. Plastino and A. Plastino, Robe's restricted three body-problem revisited,, Celest. Mech. & Dyn. Astr., 61 (1995), 197.  doi: 10.1007/BF00048515.  Google Scholar

[9]

H. A. G. Robe, A new kind of three body problem,, Celest. Mech. & Dyn. Astr., 16 (1977), 197.   Google Scholar

[10]

J. Singh and O. Leke, Existence and stability of equilibrium points in the Robe's restricted three-body problem with variable masses,, International Journal of Astronomy and Astrophysics, 3 (2013), 113.  doi: 10.4236/ijaa.2013.32013.  Google Scholar

[11]

A. G. Sokol'skii, On stability of an autonomous Hamiltonian system with two degrees of freedom under first-order resonance,, J. Appl. Math. Mech., 41 (1977), 20.   Google Scholar

[12]

L. R. Valeriano, Parametric stability in Robe's problem,, Regular and Chaotic Dynamics, 21 (2016), 126.  doi: 10.1134/S156035471601007X.  Google Scholar

show all references

References:
[1]

C. M. Giordani, A. R. Plastino and A. Plastino, Robe's restricted three body-problem with drag,, Celest. Mech. & Dyn. Astr., 66 (1996), 229.  doi: 10.1007/BF00054966.  Google Scholar

[2]

P. P. Hallan and K. B. Mangang, Non linear stability of equilibrium point in the Robe's restricted circular three body problem,, Indian J. pure. appl. Math., 38 (2007), 17.   Google Scholar

[3]

P. P. Hallan and N. Rana, The existence and stability of equilibrium points in the Robe's restricted three-body problem,, Celest. Mech. & Dyn. Astr., 79 (2001), 145.  doi: 10.1023/A:1011173320720.  Google Scholar

[4]

A. P. Markeev, Linear Hamiltonian Systems and Some Applications to the Problem of Stability of Motion of Satellites Relative to the Center of Mass,, R&C Dynamics, (2009).   Google Scholar

[5]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem,, Springer, (2009).   Google Scholar

[6]

K. R. Meyer, J. Palacián and P. Yanguas, Stability of a Hamiltonian system in a limiting case,, J. Appl. Math. Mech., 41 (2012), 20.   Google Scholar

[7]

K. R. Meyer and D. S. Schmidt, The stability of the Lagrange triangular point and a theorem of Arnol'd,, Journal of Differential equations, 62 (1986), 222.  doi: 10.1016/0022-0396(86)90098-7.  Google Scholar

[8]

A. R. Plastino and A. Plastino, Robe's restricted three body-problem revisited,, Celest. Mech. & Dyn. Astr., 61 (1995), 197.  doi: 10.1007/BF00048515.  Google Scholar

[9]

H. A. G. Robe, A new kind of three body problem,, Celest. Mech. & Dyn. Astr., 16 (1977), 197.   Google Scholar

[10]

J. Singh and O. Leke, Existence and stability of equilibrium points in the Robe's restricted three-body problem with variable masses,, International Journal of Astronomy and Astrophysics, 3 (2013), 113.  doi: 10.4236/ijaa.2013.32013.  Google Scholar

[11]

A. G. Sokol'skii, On stability of an autonomous Hamiltonian system with two degrees of freedom under first-order resonance,, J. Appl. Math. Mech., 41 (1977), 20.   Google Scholar

[12]

L. R. Valeriano, Parametric stability in Robe's problem,, Regular and Chaotic Dynamics, 21 (2016), 126.  doi: 10.1134/S156035471601007X.  Google Scholar

[1]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[2]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[3]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[5]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[8]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[9]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[10]

Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001

[11]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[12]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021003

[13]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[14]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[15]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[16]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[17]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[18]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[19]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[20]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]