August  2016, 21(6): 1917-1936. doi: 10.3934/dcdsb.2016029

Nonlinear stability of stationary points in the problem of Robe

1. 

Department Computer Science, University of Cincinnati, Cincinnati, Ohio 45221-0025, United States

2. 

Departamento de Matemática, Universidade Federal de Sergipe, São Cristovão-SE, CEP. 49100-000, Brazil

Received  August 2015 Revised  February 2016 Published  June 2016

In 1977 Robe considered a modification of the Restricted Three Body Problem, where one of the primaries is a shell filled with an incompressible liquid. The motion of the small body of negligible mass takes place inside this sphere and is therefore affected by the buoyancy force of the liquid. We investigate the existence and stability of the equilibrium points in the planar circular problem and discuss the range of the parameters for which the problem has a physical meaning.
    Our main contribution is to establish the Lyapunov stability for the equilibrium point at the center of the shell. We achieve this by putting the Hamiltonian function of Robe's problem into its normal form and then use the theorems of Arnol'd, Markeev and Sokol'skii. Resonance cases and some exceptional cases require special treatment.
Citation: Dieter Schmidt, Lucas Valeriano. Nonlinear stability of stationary points in the problem of Robe. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1917-1936. doi: 10.3934/dcdsb.2016029
References:
[1]

C. M. Giordani, A. R. Plastino and A. Plastino, Robe's restricted three body-problem with drag,, Celest. Mech. & Dyn. Astr., 66 (1996), 229.  doi: 10.1007/BF00054966.  Google Scholar

[2]

P. P. Hallan and K. B. Mangang, Non linear stability of equilibrium point in the Robe's restricted circular three body problem,, Indian J. pure. appl. Math., 38 (2007), 17.   Google Scholar

[3]

P. P. Hallan and N. Rana, The existence and stability of equilibrium points in the Robe's restricted three-body problem,, Celest. Mech. & Dyn. Astr., 79 (2001), 145.  doi: 10.1023/A:1011173320720.  Google Scholar

[4]

A. P. Markeev, Linear Hamiltonian Systems and Some Applications to the Problem of Stability of Motion of Satellites Relative to the Center of Mass,, R&C Dynamics, (2009).   Google Scholar

[5]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem,, Springer, (2009).   Google Scholar

[6]

K. R. Meyer, J. Palacián and P. Yanguas, Stability of a Hamiltonian system in a limiting case,, J. Appl. Math. Mech., 41 (2012), 20.   Google Scholar

[7]

K. R. Meyer and D. S. Schmidt, The stability of the Lagrange triangular point and a theorem of Arnol'd,, Journal of Differential equations, 62 (1986), 222.  doi: 10.1016/0022-0396(86)90098-7.  Google Scholar

[8]

A. R. Plastino and A. Plastino, Robe's restricted three body-problem revisited,, Celest. Mech. & Dyn. Astr., 61 (1995), 197.  doi: 10.1007/BF00048515.  Google Scholar

[9]

H. A. G. Robe, A new kind of three body problem,, Celest. Mech. & Dyn. Astr., 16 (1977), 197.   Google Scholar

[10]

J. Singh and O. Leke, Existence and stability of equilibrium points in the Robe's restricted three-body problem with variable masses,, International Journal of Astronomy and Astrophysics, 3 (2013), 113.  doi: 10.4236/ijaa.2013.32013.  Google Scholar

[11]

A. G. Sokol'skii, On stability of an autonomous Hamiltonian system with two degrees of freedom under first-order resonance,, J. Appl. Math. Mech., 41 (1977), 20.   Google Scholar

[12]

L. R. Valeriano, Parametric stability in Robe's problem,, Regular and Chaotic Dynamics, 21 (2016), 126.  doi: 10.1134/S156035471601007X.  Google Scholar

show all references

References:
[1]

C. M. Giordani, A. R. Plastino and A. Plastino, Robe's restricted three body-problem with drag,, Celest. Mech. & Dyn. Astr., 66 (1996), 229.  doi: 10.1007/BF00054966.  Google Scholar

[2]

P. P. Hallan and K. B. Mangang, Non linear stability of equilibrium point in the Robe's restricted circular three body problem,, Indian J. pure. appl. Math., 38 (2007), 17.   Google Scholar

[3]

P. P. Hallan and N. Rana, The existence and stability of equilibrium points in the Robe's restricted three-body problem,, Celest. Mech. & Dyn. Astr., 79 (2001), 145.  doi: 10.1023/A:1011173320720.  Google Scholar

[4]

A. P. Markeev, Linear Hamiltonian Systems and Some Applications to the Problem of Stability of Motion of Satellites Relative to the Center of Mass,, R&C Dynamics, (2009).   Google Scholar

[5]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem,, Springer, (2009).   Google Scholar

[6]

K. R. Meyer, J. Palacián and P. Yanguas, Stability of a Hamiltonian system in a limiting case,, J. Appl. Math. Mech., 41 (2012), 20.   Google Scholar

[7]

K. R. Meyer and D. S. Schmidt, The stability of the Lagrange triangular point and a theorem of Arnol'd,, Journal of Differential equations, 62 (1986), 222.  doi: 10.1016/0022-0396(86)90098-7.  Google Scholar

[8]

A. R. Plastino and A. Plastino, Robe's restricted three body-problem revisited,, Celest. Mech. & Dyn. Astr., 61 (1995), 197.  doi: 10.1007/BF00048515.  Google Scholar

[9]

H. A. G. Robe, A new kind of three body problem,, Celest. Mech. & Dyn. Astr., 16 (1977), 197.   Google Scholar

[10]

J. Singh and O. Leke, Existence and stability of equilibrium points in the Robe's restricted three-body problem with variable masses,, International Journal of Astronomy and Astrophysics, 3 (2013), 113.  doi: 10.4236/ijaa.2013.32013.  Google Scholar

[11]

A. G. Sokol'skii, On stability of an autonomous Hamiltonian system with two degrees of freedom under first-order resonance,, J. Appl. Math. Mech., 41 (1977), 20.   Google Scholar

[12]

L. R. Valeriano, Parametric stability in Robe's problem,, Regular and Chaotic Dynamics, 21 (2016), 126.  doi: 10.1134/S156035471601007X.  Google Scholar

[1]

Michele V. Bartuccelli, G. Gentile, Kyriakos V. Georgiou. Kam theory, Lindstedt series and the stability of the upside-down pendulum. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 413-426. doi: 10.3934/dcds.2003.9.413

[2]

Wen Si, Fenfen Wang, Jianguo Si. Almost-periodic perturbations of non-hyperbolic equilibrium points via Pöschel-Rüssmann KAM method. Communications on Pure & Applied Analysis, 2020, 19 (1) : 541-585. doi: 10.3934/cpaa.2020027

[3]

Andrea Davini, Maxime Zavidovique. Weak KAM theory for nonregular commuting Hamiltonians. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 57-94. doi: 10.3934/dcdsb.2013.18.57

[4]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1447-1462. doi: 10.3934/cpaa.2011.10.1447

[5]

Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069

[6]

Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080

[7]

P.K. Newton. N-vortex equilibrium theory. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 411-418. doi: 10.3934/dcds.2007.19.411

[8]

Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems & Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713

[9]

Peiyu Li. Solving normalized stationary points of a class of equilibrium problem with equilibrium constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 637-646. doi: 10.3934/jimo.2017065

[10]

Hongzi Cong, Lufang Mi, Yunfeng Shi, Yuan Wu. On the existence of full dimensional KAM torus for nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6599-6630. doi: 10.3934/dcds.2019287

[11]

Maxime Zavidovique. Existence of $C^{1,1}$ critical subsolutions in discrete weak KAM theory. Journal of Modern Dynamics, 2010, 4 (4) : 693-714. doi: 10.3934/jmd.2010.4.693

[12]

Luigi Chierchia, Gabriella Pinzari. Properly-degenerate KAM theory (following V. I. Arnold). Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 545-578. doi: 10.3934/dcdss.2010.3.545

[13]

Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2006, 5 (3) : 515-528. doi: 10.3934/cpaa.2006.5.515

[14]

Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2007, 6 (1) : 69-82. doi: 10.3934/cpaa.2007.6.69

[15]

Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461

[16]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[17]

Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control & Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010

[18]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[19]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[20]

Guillaume Bal, Alexandre Jollivet. Generalized stability estimates in inverse transport theory. Inverse Problems & Imaging, 2018, 12 (1) : 59-90. doi: 10.3934/ipi.2018003

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]