\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Boundedness in a quasilinear 2D parabolic-parabolic attraction-repulsion chemotaxis system

Abstract Related Papers Cited by
  • In this paper, we consider the following quasilinear attraction-repulsion chemotaxis system of parabolic-parabolic type \begin{equation*} \left\{ \begin{split} &u_t=\nabla\cdot(D(u)\nabla u)-\nabla\cdot(\chi u\nabla v)+\nabla\cdot(\xi u\nabla w),\qquad & x\in\Omega,\,\, t>0,\\ &v_t=\Delta v+\alpha u-\beta v,\qquad &x\in\Omega, \,\,t>0,\\ &w_t=\Delta w+\gamma u-\delta w,\qquad &x\in\Omega,\,\, t>0 \end{split} \right. \end{equation*} under homogeneous Neumann boundary conditions, where $D(u)\geq c_D (u+\varepsilon)^{m-1}$ and $\Omega\subset\mathbb{R}^2$ is a bounded domain with smooth boundary. It is shown that whenever $m>1$, for any sufficiently smooth nonnegative initial data, the system admits a global bounded classical solution for the case of non-degenerate diffusion (i.e., $\varepsilon>0$), while the system possesses a global bounded weak solution for the case of degenerate diffusion (i.e., $\varepsilon=0$).
    Mathematics Subject Classification: Primary: 35K57, 35Q92; Secondary: 35A01, 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Burczak, T. Cieślak and C. Morales-Rodrigo, Global existence vs. blow-up in a fully parabolic quasilinear 1D Keller-Segel system, Nonlinear Anal., 75 (2012), 5215-5228.doi: 10.1016/j.na.2012.04.038.

    [2]

    T. Cieślak and P. Laurençot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 437-446.doi: 10.1016/j.anihpc.2009.11.016.

    [3]

    T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851.doi: 10.1016/j.jde.2012.01.045.

    [4]

    Y. S. Choi and Z. A. Wang, Prevention of blow-up by fast diffusion in chemotaxis, J. Math. Anal. Appl., 362 (2010), 553-564.doi: 10.1016/j.jmaa.2009.08.012.

    [5]

    M. Chuai, W. Zeng, X. Yang, V. Boychenko, J. A. Glazier and C. J. Weijer, Cell movement during chick primitive streak formation, Dev. Biol., 296 (2006), 137-149.doi: 10.1016/j.ydbio.2006.04.451.

    [6]

    M. A. Gates, V. M. Coupe, E. M. Torres, R. A. Fricker-Gares and S. B. Dunnett, Spatially and temporally restricted chemoattractant and repulsive cues direct the formation of the nigro-striatal circuit, Euro. J. Neurosci., 19 (2004), 831-844.doi: 10.1111/j.1460-9568.2004.03213.x.

    [7]

    T. Hillen and K. Painter, A users guide to PDE models for chemotaxis, J. Math.Biol., 58 (2009), 183-217.doi: 10.1007/s00285-008-0201-3.

    [8]

    D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verien, 105 (2003), 103-165.

    [9]

    D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II, Jahresber. Deutsch.Math.-Verien, 106 (2004), 51-69.

    [10]

    D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.doi: 10.1016/j.jde.2004.10.022.

    [11]

    S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.doi: 10.1016/j.jde.2014.01.028.

    [12]

    S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Continuous Dynam. Systems - B, 18 (2013), 2569-2596.doi: 10.3934/dcdsb.2013.18.2569.

    [13]

    H. Y. Jin, Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478.doi: 10.1016/j.jmaa.2014.09.049.

    [14]

    H. Jin and Z. A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Meth. Appl. Sci., 38 (2015), 444-457.doi: 10.1002/mma.3080.

    [15]

    H. Jin and Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196.doi: 10.1016/j.jde.2015.08.040.

    [16]

    E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5.

    [17]

    X. Li and Z. Xiang, Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source, Discrete Continuous Dynam. Systems, 35 (2015), 3503-3531.doi: 10.3934/dcds.2015.35.3503.

    [18]

    X. Li and Z. Xiang, On an attraction-repulsion chemotaxis system with a logistic source, IMA J. Appl. Math., 81 (2016), 165-198.doi: 10.1093/imamat/hxv033.

    [19]

    J. Liu and Z. A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dynam., 6 (2012), 31-41.doi: 10.1080/17513758.2011.571722.

    [20]

    P. Liu, J. Shi and Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Continuous Dynam. Systems - B, 18 (2013), 2597-2625.doi: 10.3934/dcdsb.2013.18.2597.

    [21]

    D. Liu and Y. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537-2546.doi: 10.1002/mma.3240.

    [22]

    Y. Lou, Y. Tao and M. Winkler, Approaching the ideal free distribution in two-species competition models with fitness-dependent dispersal, SIAM J. Math. Anal., 46 (2014), 1228-1262.doi: 10.1137/130934246.

    [23]

    M. Luca, A. Chavez-Ross, L. Edelstein-Keshet and A. Mogilner, Chemotactic signaling, microglia, and Alzheimers disease senile plague: Is there a connection?, Bull. Math. Biol., 65 (2003), 693-730.doi: 10.1016/S0092-8240(03)00030-2.

    [24]

    T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601.

    [25]

    L. Nirenberg, An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa , 20 (1966), 733-737.

    [26]

    K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.

    [27]

    K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Canad. Appl. Math. Quart., 10 (2002), 501-543.

    [28]

    Y. Tao and Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.doi: 10.1142/S0218202512500443.

    [29]

    Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.doi: 10.1016/j.jde.2011.08.019.

    [30]

    Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.doi: 10.1016/j.jde.2011.07.010.

    [31]

    L. C. Wang, Y. H. Li and C. L. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Continuous Dynam. Systems, 34 (2014), 789-802.doi: 10.3934/dcds.2014.34.789.

    [32]

    L. C. Wang, C. L. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872.doi: 10.1016/j.jde.2013.12.007.

    [33]

    Y. Wang and Z. Xiang, Global existence and boundedness in a higher-dimensional quasilinear chemotaxis system, Z. Angew. Math. Phys., 66 (2015), 3159-3179.doi: 10.1007/s00033-015-0557-3.

    [34]

    Z. A. Wang and T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model, Chaos, 17 (2007), 037108, 13pp.doi: 10.1063/1.2766864.

    [35]

    M. Winkler, A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925.doi: 10.1002/mma.319.

    [36]

    M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.doi: 10.1016/j.jde.2010.02.008.

    [37]

    M. Winkler, Does a volume-filling effect always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12-24.doi: 10.1002/mma.1146.

    [38]

    M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283 (2010), 1664-1673.doi: 10.1002/mana.200810838.

    [39]

    M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.doi: 10.1016/j.matpur.2013.01.020.

    [40]

    M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064.doi: 10.1016/j.na.2009.07.045.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(104) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return