August  2016, 21(6): 2039-2056. doi: 10.3934/dcdsb.2016035

Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion

1. 

Department of Applied Mathematics Chongqing University of Posts, and Telecommunications, Chongqing 400065

Received  August 2015 Revised  November 2015 Published  June 2016

This paper deals with a parabolic-elliptic-ODE chemotaxis-haptotaxis system with nonlinear diffusion \begin{eqnarray*}\label{1a} \left\{ \begin{split}{} &u_t=\nabla\cdot(\varphi(u)\nabla u)-\chi\nabla\cdot(u\nabla v)-\xi\nabla\cdot(u\nabla w)+\mu u(1-u-w), \\ &0=\Delta v-v+u, \\ &w_{t}=-vw, \end{split} \right. \end{eqnarray*} under Neumann boundary conditions in a smooth bounded domain $\Omega\subset \mathbb{R}^{n}$ $(n\geq1)$, where $\chi$, $\xi$ and $\mu$ are positive parameters and $\varphi(u)$ is a nonlinear diffusion. Under the non-degenerate diffusion and some suitable assumptions on positive parameters $\chi,\xi,\mu$, it is shown that the corresponding initial boundary value problem possesses a unique global classical solution that is uniformly bounded in $\Omega\times(0,\infty)$. Moreover, under the degenerate diffusion, it is proved that the corresponding problem admits at least one nonnegative global bounded-in-time weak solution. Finally, for the suitably small initial data $w_{0}$, we give the decay estimate of $w$.
Citation: Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035
References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827. doi: 10.1080/03605307908820113.

[2]

S. Aznavoorian, M. L. Stracke, H. Krutzsch, E. Schiffmann and L. A. Liotta, Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells,, J. Cell Biol., 110 (1990), 1427. doi: 10.1083/jcb.110.4.1427.

[3]

D. Besser, P. Verde, Y. Nagamine and F. Blasi, Signal transduction and u-PA/u-PAR system,, Fibrinolysis, 10 (1996), 215. doi: 10.1016/S0268-9499(96)80018-X.

[4]

X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model,, Z. Angew. Math. Phys., 67 (2016). doi: 10.1007/s00033-015-0601-3.

[5]

X. Cao and S. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source,, Math. Methods Appl. Sci., 37 (2014), 2326. doi: 10.1002/mma.2992.

[6]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system,, Math. Models Methods Appl. Sci., 15 (2005), 1685. doi: 10.1142/S0218202505000947.

[7]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity,, Net. Hetero. Med., 1 (2006), 399. doi: 10.3934/nhm.2006.1.399.

[8]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,, Nonlinearity, 21 (2008), 1057. doi: 10.1088/0951-7715/21/5/009.

[9]

A. Friedman, Partial Differential Equations,, Holt, (1969).

[10]

K. Fujie, M. Winkler and T. Yokota, Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity,, Nonlinear Anal., 109 (2014), 56. doi: 10.1016/j.na.2014.06.017.

[11]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3.

[12]

T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model,, Math. Models Methods Appl. Sci., 23 (2013), 165. doi: 10.1142/S0218202512500480.

[13]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I,, Jahresber. Deutsch. Math. -Verein., 105 (2003), 103.

[14]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences II., Jahresber. Deutsch. Math. -Verein., 106 (2004), 51.

[15]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52. doi: 10.1016/j.jde.2004.10.022.

[16]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. doi: 10.1090/S0002-9947-1992-1046835-6.

[17]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5.

[18]

J. Lankeit, Chemotaxis can prevent thresholds on population density,, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1499. doi: 10.3934/dcdsb.2015.20.1499.

[19]

Y. Li and J. Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion,, Nonlinearity, 29 (2016). doi: 10.1088/0951-7715/29/5/1564.

[20]

L. Nirenberg, An extended interpolation inequality,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 20 (1966), 733.

[21]

C. S. Patlak, Random walk with persistence and external bias,, Bull. Math. Biophys., 15 (1953), 311. doi: 10.1007/BF02476407.

[22]

B. Perthame, Transport Equations in Biology,, Birkhäser-BaselVerlag, (2007).

[23]

Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source,, J. Math. Anal. Appl., 354 (2009), 60. doi: 10.1016/j.jmaa.2008.12.039.

[24]

Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system,, , (2014).

[25]

Y. Tao and M. Wang, Global solution for a chemotactic-haptotactic model of cancer invasion,, Nonlinearity, 21 (2008), 2221. doi: 10.1088/0951-7715/21/10/002.

[26]

Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source,, SIAM J. Math. Anal., 41 (2009), 1533. doi: 10.1137/090751542.

[27]

Y. Tao and Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis,, Math. Models Methods Appl. Sci., 1 (2013), 1. doi: 10.1142/S0218202512500443.

[28]

Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source,, SIAM J. Math. Anal., 43 (2011), 685. doi: 10.1137/100802943.

[29]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692. doi: 10.1016/j.jde.2011.08.019.

[30]

Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model,, Nonlinearity, 27 (2014), 1225. doi: 10.1088/0951-7715/27/6/1225.

[31]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source,, Comm. Partial Differential Equations, 32 (2007), 849. doi: 10.1080/03605300701319003.

[32]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Stud. Math. Appl., (1977).

[33]

L. Wang, C. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source,, J. Differential Equations, 256 (2014), 1847. doi: 10.1016/j.jde.2013.12.007.

[34]

Y. F. Wang, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion,, J. Differential Equations, 260 (2016), 1975. doi: 10.1016/j.jde.2015.09.051.

[35]

Z. A. Wang, M. Winkler and D. Wrzosek, Global regularity vs. infinite-time singularity formation in a chemotaxis model with volume-filling effect and degenerate diffusion,, SIAM J. Math. Anal., 44 (2012), 3502. doi: 10.1137/110853972.

[36]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties,, J. Math. Anal. Appl., 348 (2008), 708. doi: 10.1016/j.jmaa.2008.07.071.

[37]

M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?,, J. Nonlinear Sci., 24 (2014), 809. doi: 10.1007/s00332-014-9205-x.

[38]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect,, Nonlinear Anal., 72 (2010), 1044. doi: 10.1016/j.na.2009.07.045.

[39]

J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source,, J. Differential Equations, 259 (2015), 120. doi: 10.1016/j.jde.2015.02.003.

[40]

P. Zheng, C. Mu, X. Hu and Y. Tian, Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source,, J. Math. Anal. Appl., 424 (2015), 509. doi: 10.1016/j.jmaa.2014.11.031.

[41]

P. Zheng, C. Mu and X. Song, On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion,, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 1737. doi: 10.3934/dcds.2016.36.1737.

show all references

References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827. doi: 10.1080/03605307908820113.

[2]

S. Aznavoorian, M. L. Stracke, H. Krutzsch, E. Schiffmann and L. A. Liotta, Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells,, J. Cell Biol., 110 (1990), 1427. doi: 10.1083/jcb.110.4.1427.

[3]

D. Besser, P. Verde, Y. Nagamine and F. Blasi, Signal transduction and u-PA/u-PAR system,, Fibrinolysis, 10 (1996), 215. doi: 10.1016/S0268-9499(96)80018-X.

[4]

X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model,, Z. Angew. Math. Phys., 67 (2016). doi: 10.1007/s00033-015-0601-3.

[5]

X. Cao and S. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source,, Math. Methods Appl. Sci., 37 (2014), 2326. doi: 10.1002/mma.2992.

[6]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system,, Math. Models Methods Appl. Sci., 15 (2005), 1685. doi: 10.1142/S0218202505000947.

[7]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity,, Net. Hetero. Med., 1 (2006), 399. doi: 10.3934/nhm.2006.1.399.

[8]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,, Nonlinearity, 21 (2008), 1057. doi: 10.1088/0951-7715/21/5/009.

[9]

A. Friedman, Partial Differential Equations,, Holt, (1969).

[10]

K. Fujie, M. Winkler and T. Yokota, Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity,, Nonlinear Anal., 109 (2014), 56. doi: 10.1016/j.na.2014.06.017.

[11]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3.

[12]

T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model,, Math. Models Methods Appl. Sci., 23 (2013), 165. doi: 10.1142/S0218202512500480.

[13]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I,, Jahresber. Deutsch. Math. -Verein., 105 (2003), 103.

[14]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences II., Jahresber. Deutsch. Math. -Verein., 106 (2004), 51.

[15]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52. doi: 10.1016/j.jde.2004.10.022.

[16]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. doi: 10.1090/S0002-9947-1992-1046835-6.

[17]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5.

[18]

J. Lankeit, Chemotaxis can prevent thresholds on population density,, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1499. doi: 10.3934/dcdsb.2015.20.1499.

[19]

Y. Li and J. Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion,, Nonlinearity, 29 (2016). doi: 10.1088/0951-7715/29/5/1564.

[20]

L. Nirenberg, An extended interpolation inequality,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 20 (1966), 733.

[21]

C. S. Patlak, Random walk with persistence and external bias,, Bull. Math. Biophys., 15 (1953), 311. doi: 10.1007/BF02476407.

[22]

B. Perthame, Transport Equations in Biology,, Birkhäser-BaselVerlag, (2007).

[23]

Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source,, J. Math. Anal. Appl., 354 (2009), 60. doi: 10.1016/j.jmaa.2008.12.039.

[24]

Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system,, , (2014).

[25]

Y. Tao and M. Wang, Global solution for a chemotactic-haptotactic model of cancer invasion,, Nonlinearity, 21 (2008), 2221. doi: 10.1088/0951-7715/21/10/002.

[26]

Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source,, SIAM J. Math. Anal., 41 (2009), 1533. doi: 10.1137/090751542.

[27]

Y. Tao and Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis,, Math. Models Methods Appl. Sci., 1 (2013), 1. doi: 10.1142/S0218202512500443.

[28]

Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source,, SIAM J. Math. Anal., 43 (2011), 685. doi: 10.1137/100802943.

[29]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692. doi: 10.1016/j.jde.2011.08.019.

[30]

Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model,, Nonlinearity, 27 (2014), 1225. doi: 10.1088/0951-7715/27/6/1225.

[31]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source,, Comm. Partial Differential Equations, 32 (2007), 849. doi: 10.1080/03605300701319003.

[32]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Stud. Math. Appl., (1977).

[33]

L. Wang, C. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source,, J. Differential Equations, 256 (2014), 1847. doi: 10.1016/j.jde.2013.12.007.

[34]

Y. F. Wang, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion,, J. Differential Equations, 260 (2016), 1975. doi: 10.1016/j.jde.2015.09.051.

[35]

Z. A. Wang, M. Winkler and D. Wrzosek, Global regularity vs. infinite-time singularity formation in a chemotaxis model with volume-filling effect and degenerate diffusion,, SIAM J. Math. Anal., 44 (2012), 3502. doi: 10.1137/110853972.

[36]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties,, J. Math. Anal. Appl., 348 (2008), 708. doi: 10.1016/j.jmaa.2008.07.071.

[37]

M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?,, J. Nonlinear Sci., 24 (2014), 809. doi: 10.1007/s00332-014-9205-x.

[38]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect,, Nonlinear Anal., 72 (2010), 1044. doi: 10.1016/j.na.2009.07.045.

[39]

J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source,, J. Differential Equations, 259 (2015), 120. doi: 10.1016/j.jde.2015.02.003.

[40]

P. Zheng, C. Mu, X. Hu and Y. Tian, Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source,, J. Math. Anal. Appl., 424 (2015), 509. doi: 10.1016/j.jmaa.2014.11.031.

[41]

P. Zheng, C. Mu and X. Song, On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion,, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 1737. doi: 10.3934/dcds.2016.36.1737.

[1]

Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737

[2]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[3]

Jiashan Zheng. Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 627-643. doi: 10.3934/dcds.2017026

[4]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[5]

Youshan Tao, Michael Winkler. A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2047-2067. doi: 10.3934/cpaa.2019092

[6]

Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258

[7]

Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147

[8]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[9]

Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-20. doi: 10.3934/dcdsb.2018328

[10]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2019064

[11]

Fuchen Zhang, Xiaofeng Liao, Chunlai Mu, Guangyun Zhang, Yi-An Chen. On global boundedness of the Chen system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1673-1681. doi: 10.3934/dcdsb.2017080

[12]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[13]

Yilong Wang, Xuande Zhang. On a parabolic-elliptic chemotaxis-growth system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 321-328. doi: 10.3934/dcdss.2020018

[14]

Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure & Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97

[15]

Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168

[16]

Liangchen Wang, Yuhuan Li, Chunlai Mu. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 789-802. doi: 10.3934/dcds.2014.34.789

[17]

Xie Li, Yilong Wang. Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2717-2729. doi: 10.3934/dcdsb.2017132

[18]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[19]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121

[20]

Qi Wang, Jingyue Yang, Feng Yu. Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5021-5036. doi: 10.3934/dcds.2017216

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]