Citation: |
[1] |
G. W. Bluman and J. D. Cole, Similarity Methods for Differential Equation, Springer-Verlag, New York-Heidelberg, 1974.doi: 10.1007/978-1-4612-6394-4. |
[2] |
G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York, 1989.doi: 10.1007/978-1-4757-4307-4. |
[3] |
S. N. Chow and J. K. Hale, Method of Bifurcation Theory, Springer-Verlag, New York, 1982. |
[4] |
E. G. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277 (2000), 212-218.doi: 10.1016/S0375-9601(00)00725-8. |
[5] |
N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53-98.doi: 10.1016/0022-0396(79)90152-9. |
[6] |
Z. T. Fu, S. K. Liu and S. D. Liu, New exact solutions to the KdV-Burgers-Kuramoto equation, Chaos. Soliton. Fract., 23 (2005), 609-616.doi: 10.1016/j.chaos.2004.05.012. |
[7] |
Y. G. Fu and Z. R. Liu, Persistence of travelling fronts of KdV-Burgers-Kuramoto equation, Appl. Math. comp., 216 (2010), 2199-2206.doi: 10.1016/j.amc.2010.03.057. |
[8] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-1140-2. |
[9] |
J. G. Guo, L. J. Zhou and S. Y. Zhang, Geometrical nonlinear waves in finite deformation elastic rods, Appl. Math. Mech., 26 (2005), 667-674.doi: 10.1007/BF02466342. |
[10] |
A. K. Gupta and S. Saha Ray, Traveling wave solution of fractional KdV-Burger-Kuramoto equation describing nonlinear physical phenomena, AIP Advances, 4 (2014), 097120.doi: 10.1063/1.4895910. |
[11] |
N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Reidel, Dordrecht, 1985.doi: 10.1007/978-94-009-5243-0. |
[12] |
C. K. R. T. Jones, Geometric singular perturbation, in Dynamical Systems, Springer Lecture Notes Math., 1609 (1995), 44-120.doi: 10.1007/BFb0095239. |
[13] |
B. Katzengruber, M. Krupa and P. Szmolyan, Bifurcation of traveling waves in extrinsic semiconductors, Physica D, 144 (2000), 1-19.doi: 10.1016/S0167-2789(00)00030-0. |
[14] |
T. Kawahara, Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation, Phys. Rev. Lett., 51 (1983), 381-383.doi: 10.1103/PhysRevLett.51.381. |
[15] |
S. A. Khuri, Traveling wave solutions for nonlinear differential equations: A unified ansätze approach, Chaos. Soliton. Fract., 32 (2007), 252-258.doi: 10.1016/j.chaos.2005.10.106. |
[16] |
J. M. Kim and C. Chun, New exact solutions to the KdV-Burgers-Kuramoto equation with the Exp-function method, Abstr. Appl. Anal., 2012 (2012), Art. ID 892420, 10 pp.doi: 10.1155/2012/892420. |
[17] |
N. A. Kudryashov, Exact solutions of the generalized Kuramoto-Sivashinsky equation, Phys. Lett. A, 147 (1990), 287-291.doi: 10.1016/0375-9601(90)90449-X. |
[18] |
N. A. Kudryashov and E. D. Zargaryan, Solitary waves in active-dissipative dispersive media, J. Phys. A, 29 (1996), 8067-8077.doi: 10.1088/0305-4470/29/24/029. |
[19] |
K. L. Lan and H. B. Wang, Exact solutions for two nonlinear equations: I, J. Phys. A, 23 (1990), 3923-3928.doi: 10.1088/0305-4470/23/17/021. |
[20] |
J. B. Li and H. H. Dai, On the Study of Singular Nonlinear Travelling Wave Equation: Dynamical System Approach, Science Press, Beijing, 2007. |
[21] |
J. B. Li, Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system, Discrete Cont. Dyn.-B, 19 (2014), 1719-1729.doi: 10.3934/dcdsb.2014.19.1719. |
[22] |
J. B. Li and F. J. Chen, Exact traveling wave solutions and bifurcations of the dual Ito equation, Nonlinear Dynam., 82 (2015), 1537-1550.doi: 10.1007/s11071-015-2259-y. |
[23] |
C. Z. Li and Z. F. Zhang, A criterion for determining the monotonicity of the ratio of two Abelian integrals, J. Differential Equations, 124 (1996), 407-424.doi: 10.1006/jdeq.1996.0017. |
[24] |
H. Z. Liu, Comment on "New Exact Solutions to the KdV-Burgers-Kuramoto Equation with the Exp-Function Method", Abstr. Appl. Anal., 2014 (2014), Art. ID 240784, 4 pp.doi: 10.1155/2014/240784. |
[25] |
S. D. Liu, S. K. Liu, Z. H. Huang and Q. Zhao, On a class of nonlinear Schrödinger equations III, Prog. Natural Sci., 9 (1999), 912-918. |
[26] |
P. J. Olver, Application of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986.doi: 10.1007/978-1-4684-0274-2. |
[27] |
L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic, New York, 1982. |
[28] |
E. J. Parkes and B. R. Duffy, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comp. Phys. Commun., 98 (1996), 288-300.doi: 10.1016/0010-4655(96)00104-X. |
[29] |
S. A. Sezer, A. Yildirim and S. T. Mohyud-Din, He's homotopy perturbation method for solving the fractional KdV-Burgers-Kuramoto equation, Int. J. Numer. Method H., 21 (2011), 448-458.doi: 10.1108/09615531111123119. |
[30] |
G. I. Sivashinsky, Large cells in nonlinear marangoni convection, Physica D, 4 (1982), 227-235.doi: 10.1016/0167-2789(82)90063-X. |
[31] |
L. L. Wei, Y. N. He and A. Yildirim, Numerical algorithm based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional KdV-Burgers-Kuramoto equation, Zamm-Z. Angew. Math. Me., 93 (2013), 14-28.doi: 10.1002/zamm.201200003. |
[32] |
Y. Xie, S. Zhu and K. Su, Solving the KdV-Burgers-Kuramoto equation by a combination method, Int. J. Modern Phys. B, 23 (2009), 2101-2106.doi: 10.1142/S0217979209052017. |
[33] |
E. Zeidler, Applied Functional Analysis, Springer-Verlag, New York, 1995. |
[34] |
S. Zhang, New exact solutions of the KdV-Burgers-Kuramoto equation, Phys. Lett. A, 358 (2006), 414-420.doi: 10.1016/j.physleta.2006.05.071. |
[35] |
Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations, Amer. Math. Soc., Providence, 1992. |