August  2016, 21(6): 2057-2071. doi: 10.3934/dcdsb.2016036

Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation

1. 

School of Applied Mathematics, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China

2. 

School of Computer Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan 610041, China

Received  April 2015 Revised  April 2016 Published  June 2016

In this paper, the Lie symmetry analysis is performed on the KBK equation. By constructing its one-dimensional optimal system, we obtain four classes of reduced equations and corresponding group-invariant solutions. Particularly, the traveling wave equation, as an important reduced equation, is investigated in detail. Treating it as a singular perturbation system in $\mathbb{R}^3$, we study the phase space geometry of its reduced system on a two-dimensional invariant manifold by using the dynamical system methods such as tracking the unstable manifold of the saddle, studying the equilibria at infinity and discussing the homoclinic bifurcation and Poincaré bifurcation. Correspongding wavespeed conditions are determined to guarantee the existence of various bounded traveling waves of the KBK equation.
Citation: Yuqian Zhou, Qian Liu. Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2057-2071. doi: 10.3934/dcdsb.2016036
References:
[1]

G. W. Bluman and J. D. Cole, Similarity Methods for Differential Equation,, Springer-Verlag, (1974). doi: 10.1007/978-1-4612-6394-4. Google Scholar

[2]

G. W. Bluman and S. Kumei, Symmetries and Differential Equations,, Springer-Verlag, (1989). doi: 10.1007/978-1-4757-4307-4. Google Scholar

[3]

S. N. Chow and J. K. Hale, Method of Bifurcation Theory,, Springer-Verlag, (1982). Google Scholar

[4]

E. G. Fan, Extended tanh-function method and its applications to nonlinear equations,, Phys. Lett. A, 277 (2000), 212. doi: 10.1016/S0375-9601(00)00725-8. Google Scholar

[5]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations,, J. Differential Equations, 31 (1979), 53. doi: 10.1016/0022-0396(79)90152-9. Google Scholar

[6]

Z. T. Fu, S. K. Liu and S. D. Liu, New exact solutions to the KdV-Burgers-Kuramoto equation,, Chaos. Soliton. Fract., 23 (2005), 609. doi: 10.1016/j.chaos.2004.05.012. Google Scholar

[7]

Y. G. Fu and Z. R. Liu, Persistence of travelling fronts of KdV-Burgers-Kuramoto equation,, Appl. Math. comp., 216 (2010), 2199. doi: 10.1016/j.amc.2010.03.057. Google Scholar

[8]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-1140-2. Google Scholar

[9]

J. G. Guo, L. J. Zhou and S. Y. Zhang, Geometrical nonlinear waves in finite deformation elastic rods,, Appl. Math. Mech., 26 (2005), 667. doi: 10.1007/BF02466342. Google Scholar

[10]

A. K. Gupta and S. Saha Ray, Traveling wave solution of fractional KdV-Burger-Kuramoto equation describing nonlinear physical phenomena,, AIP Advances, 4 (2014). doi: 10.1063/1.4895910. Google Scholar

[11]

N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics,, Reidel, (1985). doi: 10.1007/978-94-009-5243-0. Google Scholar

[12]

C. K. R. T. Jones, Geometric singular perturbation, in Dynamical Systems,, Springer Lecture Notes Math., 1609 (1995), 44. doi: 10.1007/BFb0095239. Google Scholar

[13]

B. Katzengruber, M. Krupa and P. Szmolyan, Bifurcation of traveling waves in extrinsic semiconductors,, Physica D, 144 (2000), 1. doi: 10.1016/S0167-2789(00)00030-0. Google Scholar

[14]

T. Kawahara, Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation,, Phys. Rev. Lett., 51 (1983), 381. doi: 10.1103/PhysRevLett.51.381. Google Scholar

[15]

S. A. Khuri, Traveling wave solutions for nonlinear differential equations: A unified ansätze approach,, Chaos. Soliton. Fract., 32 (2007), 252. doi: 10.1016/j.chaos.2005.10.106. Google Scholar

[16]

J. M. Kim and C. Chun, New exact solutions to the KdV-Burgers-Kuramoto equation with the Exp-function method,, Abstr. Appl. Anal., 2012 (2012). doi: 10.1155/2012/892420. Google Scholar

[17]

N. A. Kudryashov, Exact solutions of the generalized Kuramoto-Sivashinsky equation,, Phys. Lett. A, 147 (1990), 287. doi: 10.1016/0375-9601(90)90449-X. Google Scholar

[18]

N. A. Kudryashov and E. D. Zargaryan, Solitary waves in active-dissipative dispersive media,, J. Phys. A, 29 (1996), 8067. doi: 10.1088/0305-4470/29/24/029. Google Scholar

[19]

K. L. Lan and H. B. Wang, Exact solutions for two nonlinear equations: I,, J. Phys. A, 23 (1990), 3923. doi: 10.1088/0305-4470/23/17/021. Google Scholar

[20]

J. B. Li and H. H. Dai, On the Study of Singular Nonlinear Travelling Wave Equation: Dynamical System Approach,, Science Press, (2007). Google Scholar

[21]

J. B. Li, Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system,, Discrete Cont. Dyn.-B, 19 (2014), 1719. doi: 10.3934/dcdsb.2014.19.1719. Google Scholar

[22]

J. B. Li and F. J. Chen, Exact traveling wave solutions and bifurcations of the dual Ito equation,, Nonlinear Dynam., 82 (2015), 1537. doi: 10.1007/s11071-015-2259-y. Google Scholar

[23]

C. Z. Li and Z. F. Zhang, A criterion for determining the monotonicity of the ratio of two Abelian integrals,, J. Differential Equations, 124 (1996), 407. doi: 10.1006/jdeq.1996.0017. Google Scholar

[24]

H. Z. Liu, Comment on "New Exact Solutions to the KdV-Burgers-Kuramoto Equation with the Exp-Function Method",, Abstr. Appl. Anal., 2014 (2014). doi: 10.1155/2014/240784. Google Scholar

[25]

S. D. Liu, S. K. Liu, Z. H. Huang and Q. Zhao, On a class of nonlinear Schrödinger equations III,, Prog. Natural Sci., 9 (1999), 912. Google Scholar

[26]

P. J. Olver, Application of Lie Groups to Differential Equations,, Springer-Verlag, (1986). doi: 10.1007/978-1-4684-0274-2. Google Scholar

[27]

L. V. Ovsiannikov, Group Analysis of Differential Equations,, Academic, (1982). Google Scholar

[28]

E. J. Parkes and B. R. Duffy, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations,, Comp. Phys. Commun., 98 (1996), 288. doi: 10.1016/0010-4655(96)00104-X. Google Scholar

[29]

S. A. Sezer, A. Yildirim and S. T. Mohyud-Din, He's homotopy perturbation method for solving the fractional KdV-Burgers-Kuramoto equation,, Int. J. Numer. Method H., 21 (2011), 448. doi: 10.1108/09615531111123119. Google Scholar

[30]

G. I. Sivashinsky, Large cells in nonlinear marangoni convection,, Physica D, 4 (1982), 227. doi: 10.1016/0167-2789(82)90063-X. Google Scholar

[31]

L. L. Wei, Y. N. He and A. Yildirim, Numerical algorithm based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional KdV-Burgers-Kuramoto equation,, Zamm-Z. Angew. Math. Me., 93 (2013), 14. doi: 10.1002/zamm.201200003. Google Scholar

[32]

Y. Xie, S. Zhu and K. Su, Solving the KdV-Burgers-Kuramoto equation by a combination method,, Int. J. Modern Phys. B, 23 (2009), 2101. doi: 10.1142/S0217979209052017. Google Scholar

[33]

E. Zeidler, Applied Functional Analysis,, Springer-Verlag, (1995). Google Scholar

[34]

S. Zhang, New exact solutions of the KdV-Burgers-Kuramoto equation,, Phys. Lett. A, 358 (2006), 414. doi: 10.1016/j.physleta.2006.05.071. Google Scholar

[35]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations,, Amer. Math. Soc., (1992). Google Scholar

show all references

References:
[1]

G. W. Bluman and J. D. Cole, Similarity Methods for Differential Equation,, Springer-Verlag, (1974). doi: 10.1007/978-1-4612-6394-4. Google Scholar

[2]

G. W. Bluman and S. Kumei, Symmetries and Differential Equations,, Springer-Verlag, (1989). doi: 10.1007/978-1-4757-4307-4. Google Scholar

[3]

S. N. Chow and J. K. Hale, Method of Bifurcation Theory,, Springer-Verlag, (1982). Google Scholar

[4]

E. G. Fan, Extended tanh-function method and its applications to nonlinear equations,, Phys. Lett. A, 277 (2000), 212. doi: 10.1016/S0375-9601(00)00725-8. Google Scholar

[5]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations,, J. Differential Equations, 31 (1979), 53. doi: 10.1016/0022-0396(79)90152-9. Google Scholar

[6]

Z. T. Fu, S. K. Liu and S. D. Liu, New exact solutions to the KdV-Burgers-Kuramoto equation,, Chaos. Soliton. Fract., 23 (2005), 609. doi: 10.1016/j.chaos.2004.05.012. Google Scholar

[7]

Y. G. Fu and Z. R. Liu, Persistence of travelling fronts of KdV-Burgers-Kuramoto equation,, Appl. Math. comp., 216 (2010), 2199. doi: 10.1016/j.amc.2010.03.057. Google Scholar

[8]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-1140-2. Google Scholar

[9]

J. G. Guo, L. J. Zhou and S. Y. Zhang, Geometrical nonlinear waves in finite deformation elastic rods,, Appl. Math. Mech., 26 (2005), 667. doi: 10.1007/BF02466342. Google Scholar

[10]

A. K. Gupta and S. Saha Ray, Traveling wave solution of fractional KdV-Burger-Kuramoto equation describing nonlinear physical phenomena,, AIP Advances, 4 (2014). doi: 10.1063/1.4895910. Google Scholar

[11]

N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics,, Reidel, (1985). doi: 10.1007/978-94-009-5243-0. Google Scholar

[12]

C. K. R. T. Jones, Geometric singular perturbation, in Dynamical Systems,, Springer Lecture Notes Math., 1609 (1995), 44. doi: 10.1007/BFb0095239. Google Scholar

[13]

B. Katzengruber, M. Krupa and P. Szmolyan, Bifurcation of traveling waves in extrinsic semiconductors,, Physica D, 144 (2000), 1. doi: 10.1016/S0167-2789(00)00030-0. Google Scholar

[14]

T. Kawahara, Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation,, Phys. Rev. Lett., 51 (1983), 381. doi: 10.1103/PhysRevLett.51.381. Google Scholar

[15]

S. A. Khuri, Traveling wave solutions for nonlinear differential equations: A unified ansätze approach,, Chaos. Soliton. Fract., 32 (2007), 252. doi: 10.1016/j.chaos.2005.10.106. Google Scholar

[16]

J. M. Kim and C. Chun, New exact solutions to the KdV-Burgers-Kuramoto equation with the Exp-function method,, Abstr. Appl. Anal., 2012 (2012). doi: 10.1155/2012/892420. Google Scholar

[17]

N. A. Kudryashov, Exact solutions of the generalized Kuramoto-Sivashinsky equation,, Phys. Lett. A, 147 (1990), 287. doi: 10.1016/0375-9601(90)90449-X. Google Scholar

[18]

N. A. Kudryashov and E. D. Zargaryan, Solitary waves in active-dissipative dispersive media,, J. Phys. A, 29 (1996), 8067. doi: 10.1088/0305-4470/29/24/029. Google Scholar

[19]

K. L. Lan and H. B. Wang, Exact solutions for two nonlinear equations: I,, J. Phys. A, 23 (1990), 3923. doi: 10.1088/0305-4470/23/17/021. Google Scholar

[20]

J. B. Li and H. H. Dai, On the Study of Singular Nonlinear Travelling Wave Equation: Dynamical System Approach,, Science Press, (2007). Google Scholar

[21]

J. B. Li, Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system,, Discrete Cont. Dyn.-B, 19 (2014), 1719. doi: 10.3934/dcdsb.2014.19.1719. Google Scholar

[22]

J. B. Li and F. J. Chen, Exact traveling wave solutions and bifurcations of the dual Ito equation,, Nonlinear Dynam., 82 (2015), 1537. doi: 10.1007/s11071-015-2259-y. Google Scholar

[23]

C. Z. Li and Z. F. Zhang, A criterion for determining the monotonicity of the ratio of two Abelian integrals,, J. Differential Equations, 124 (1996), 407. doi: 10.1006/jdeq.1996.0017. Google Scholar

[24]

H. Z. Liu, Comment on "New Exact Solutions to the KdV-Burgers-Kuramoto Equation with the Exp-Function Method",, Abstr. Appl. Anal., 2014 (2014). doi: 10.1155/2014/240784. Google Scholar

[25]

S. D. Liu, S. K. Liu, Z. H. Huang and Q. Zhao, On a class of nonlinear Schrödinger equations III,, Prog. Natural Sci., 9 (1999), 912. Google Scholar

[26]

P. J. Olver, Application of Lie Groups to Differential Equations,, Springer-Verlag, (1986). doi: 10.1007/978-1-4684-0274-2. Google Scholar

[27]

L. V. Ovsiannikov, Group Analysis of Differential Equations,, Academic, (1982). Google Scholar

[28]

E. J. Parkes and B. R. Duffy, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations,, Comp. Phys. Commun., 98 (1996), 288. doi: 10.1016/0010-4655(96)00104-X. Google Scholar

[29]

S. A. Sezer, A. Yildirim and S. T. Mohyud-Din, He's homotopy perturbation method for solving the fractional KdV-Burgers-Kuramoto equation,, Int. J. Numer. Method H., 21 (2011), 448. doi: 10.1108/09615531111123119. Google Scholar

[30]

G. I. Sivashinsky, Large cells in nonlinear marangoni convection,, Physica D, 4 (1982), 227. doi: 10.1016/0167-2789(82)90063-X. Google Scholar

[31]

L. L. Wei, Y. N. He and A. Yildirim, Numerical algorithm based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional KdV-Burgers-Kuramoto equation,, Zamm-Z. Angew. Math. Me., 93 (2013), 14. doi: 10.1002/zamm.201200003. Google Scholar

[32]

Y. Xie, S. Zhu and K. Su, Solving the KdV-Burgers-Kuramoto equation by a combination method,, Int. J. Modern Phys. B, 23 (2009), 2101. doi: 10.1142/S0217979209052017. Google Scholar

[33]

E. Zeidler, Applied Functional Analysis,, Springer-Verlag, (1995). Google Scholar

[34]

S. Zhang, New exact solutions of the KdV-Burgers-Kuramoto equation,, Phys. Lett. A, 358 (2006), 414. doi: 10.1016/j.physleta.2006.05.071. Google Scholar

[35]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations,, Amer. Math. Soc., (1992). Google Scholar

[1]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[2]

John M. Hong, Cheng-Hsiung Hsu, Bo-Chih Huang, Tzi-Sheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1501-1526. doi: 10.3934/cpaa.2013.12.1501

[3]

Annie Millet, Svetlana Roudenko. Generalized KdV equation subject to a stochastic perturbation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1177-1198. doi: 10.3934/dcdsb.2018147

[4]

Hua Chen, Ling-Jun Wang. A perturbation approach for the transverse spectral stability of small periodic traveling waves of the ZK equation. Kinetic & Related Models, 2012, 5 (2) : 261-281. doi: 10.3934/krm.2012.5.261

[5]

Boris Andreianov, Nicolas Seguin. Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1939-1964. doi: 10.3934/dcds.2012.32.1939

[6]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[7]

Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223

[8]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157

[9]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[10]

Zhaosheng Feng, Qingguo Meng. Exact solution for a two-dimensional KDV-Burgers-type equation with nonlinear terms of any order. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 285-291. doi: 10.3934/dcdsb.2007.7.285

[11]

Yuncherl Choi, Jongmin Han, Chun-Hsiung Hsia. Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1933-1957. doi: 10.3934/dcdsb.2015.20.1933

[12]

Seung-Yeal Ha, Shi Jin, Jinwook Jung. A local sensitivity analysis for the kinetic Kuramoto equation with random inputs. Networks & Heterogeneous Media, 2019, 14 (2) : 317-340. doi: 10.3934/nhm.2019013

[13]

Weiran Sun, Min Tang. A relaxation method for one dimensional traveling waves of singular and nonlocal equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1459-1491. doi: 10.3934/dcdsb.2013.18.1459

[14]

Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517

[15]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[16]

Joseph Thirouin. Classification of traveling waves for a quadratic Szegő equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3099-3122. doi: 10.3934/dcds.2019128

[17]

Heinz Schättler, Urszula Ledzewicz. Perturbation feedback control: A geometric interpretation. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 631-654. doi: 10.3934/naco.2012.2.631

[18]

Weiguo Zhang, Yujiao Sun, Zhengming Li, Shengbing Pei, Xiang Li. Bounded traveling wave solutions for MKdV-Burgers equation with the negative dispersive coefficient. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2883-2903. doi: 10.3934/dcdsb.2016078

[19]

Frank D. Grosshans, Jürgen Scheurle, Sebastian Walcher. Invariant sets forced by symmetry. Journal of Geometric Mechanics, 2012, 4 (3) : 271-296. doi: 10.3934/jgm.2012.4.271

[20]

Marc Massot. Singular perturbation analysis for the reduction of complex chemistry in gaseous mixtures using the entropic structure. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 433-456. doi: 10.3934/dcdsb.2002.2.433

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]