September  2016, 21(7): 2091-2107. doi: 10.3934/dcdsb.2016038

Singular fold with real noise

1. 

Department of Mathematics, Michigan State University, East Lansing, MI 48824

2. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

3. 

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, United States

Received  November 2015 Revised  January 2016 Published  August 2016

We study the effect of small real noise on the jump behavior near a singular fold point, which is an important step in understanding the burst-spike behavior in many biological models. We show by the theory of center manifolds and random invariant manifolds that if the order of the noise is high enough, trajectories essentially pass the fold point in the manner as though there is no noise.
Citation: Peter W. Bates, Ji Li, Mingji Zhang. Singular fold with real noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2091-2107. doi: 10.3934/dcdsb.2016038
References:
[1]

L. Arnold, Random Dynamical Systems,, Springer, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

N. Berglund and B. Gentz, Noise-Induced Phenomena in Slow-fast Dynamical Systems. A Sample-Paths Approach,, Probab. Appl., (2006).   Google Scholar

[3]

P. Bates, J. Li and K. Lu, Normally hyperbolic invariant manifolds for random dynamical systems,, Trans. Amer. Math. Soc., 365 (2013), 5933.  doi: 10.1090/S0002-9947-2013-05825-4.  Google Scholar

[4]

P. Bates, J. Li and K. Lu, Invariant foliations for random dynamical systems,, Discrete Contin. Dyn. Syst., 34 (2014), 3639.  doi: 10.3934/dcds.2014.34.3639.  Google Scholar

[5]

P. Bates, J. Li and K. Lu, Geometric singular perturbation theory with real noise,, J. Differential Equations, 259 (2015), 5137.  doi: 10.1016/j.jde.2015.06.023.  Google Scholar

[6]

F. Dumortier and R. Roussarie, Canard cycles and center manifolds,, Mem. Amer. Math. Soc., 121 (1996).  doi: 10.1090/memo/0577.  Google Scholar

[7]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations,, J. Differential Equations, 31 (1979), 53.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[8]

M. Krupa and P. Szmolyan, Extending singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions,, SIAM J. Math. Analysis, 33 (2001), 286.  doi: 10.1137/S0036141099360919.  Google Scholar

[9]

K. Lu and Q.-D. Wang, Chaos in differential equations driven by a nonautonomous force,, Nonlinearity, 23 (2010), 2935.  doi: 10.1088/0951-7715/23/11/012.  Google Scholar

[10]

E. F. Mishchenko and N. Kh. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations,, Plenum Press, (1980).  doi: 10.1007/978-1-4615-9047-7.  Google Scholar

[11]

P. Szmolyan and M. Wechselberger, Relaxation oscillation in $R^3$,, J. Differential Equations, 200 (2004), 69.  doi: 10.1016/j.jde.2003.09.010.  Google Scholar

[12]

D. Terman, The transition from bursting to continuous spiking in an excitable membrane model,, J. Nonlinear Sci., 2 (1992), 133.  doi: 10.1007/BF02429854.  Google Scholar

[13]

D. Terman, Chaotic spikes arising from a model of bursting in excitable membranes,, SIAM J. Appl. Math., 51 (1991), 1418.  doi: 10.1137/0151071.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems,, Springer, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

N. Berglund and B. Gentz, Noise-Induced Phenomena in Slow-fast Dynamical Systems. A Sample-Paths Approach,, Probab. Appl., (2006).   Google Scholar

[3]

P. Bates, J. Li and K. Lu, Normally hyperbolic invariant manifolds for random dynamical systems,, Trans. Amer. Math. Soc., 365 (2013), 5933.  doi: 10.1090/S0002-9947-2013-05825-4.  Google Scholar

[4]

P. Bates, J. Li and K. Lu, Invariant foliations for random dynamical systems,, Discrete Contin. Dyn. Syst., 34 (2014), 3639.  doi: 10.3934/dcds.2014.34.3639.  Google Scholar

[5]

P. Bates, J. Li and K. Lu, Geometric singular perturbation theory with real noise,, J. Differential Equations, 259 (2015), 5137.  doi: 10.1016/j.jde.2015.06.023.  Google Scholar

[6]

F. Dumortier and R. Roussarie, Canard cycles and center manifolds,, Mem. Amer. Math. Soc., 121 (1996).  doi: 10.1090/memo/0577.  Google Scholar

[7]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations,, J. Differential Equations, 31 (1979), 53.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[8]

M. Krupa and P. Szmolyan, Extending singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions,, SIAM J. Math. Analysis, 33 (2001), 286.  doi: 10.1137/S0036141099360919.  Google Scholar

[9]

K. Lu and Q.-D. Wang, Chaos in differential equations driven by a nonautonomous force,, Nonlinearity, 23 (2010), 2935.  doi: 10.1088/0951-7715/23/11/012.  Google Scholar

[10]

E. F. Mishchenko and N. Kh. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations,, Plenum Press, (1980).  doi: 10.1007/978-1-4615-9047-7.  Google Scholar

[11]

P. Szmolyan and M. Wechselberger, Relaxation oscillation in $R^3$,, J. Differential Equations, 200 (2004), 69.  doi: 10.1016/j.jde.2003.09.010.  Google Scholar

[12]

D. Terman, The transition from bursting to continuous spiking in an excitable membrane model,, J. Nonlinear Sci., 2 (1992), 133.  doi: 10.1007/BF02429854.  Google Scholar

[13]

D. Terman, Chaotic spikes arising from a model of bursting in excitable membranes,, SIAM J. Appl. Math., 51 (1991), 1418.  doi: 10.1137/0151071.  Google Scholar

[1]

Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355

[2]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[3]

Yujun Zhu. Preimage entropy for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 829-851. doi: 10.3934/dcds.2007.18.829

[4]

Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639

[5]

Weigu Li, Kening Lu. Takens theorem for random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3191-3207. doi: 10.3934/dcdsb.2016093

[6]

Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727

[7]

Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285

[8]

Weigu Li, Kening Lu. A Siegel theorem for dynamical systems under random perturbations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 635-642. doi: 10.3934/dcdsb.2008.9.635

[9]

Yuri Kifer. Computations in dynamical systems via random perturbations. Discrete & Continuous Dynamical Systems - A, 1997, 3 (4) : 457-476. doi: 10.3934/dcds.1997.3.457

[10]

Thomas Bogenschütz, Achim Doebler. Large deviations in expanding random dynamical systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 805-812. doi: 10.3934/dcds.1999.5.805

[11]

Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745

[12]

Tomás Caraballo, Stefanie Sonner. Random pullback exponential attractors: General existence results for random dynamical systems in Banach spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6383-6403. doi: 10.3934/dcds.2017277

[13]

Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

[14]

Doan Thai Son. On analyticity for Lyapunov exponents of generic bounded linear random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3113-3126. doi: 10.3934/dcdsb.2017166

[15]

T. Jäger. Neuronal coding of pacemaker neurons -- A random dynamical systems approach. Communications on Pure & Applied Analysis, 2011, 10 (3) : 995-1009. doi: 10.3934/cpaa.2011.10.995

[16]

N. D. Cong, T. S. Doan, S. Siegmund. A Bohl-Perron type theorem for random dynamical systems. Conference Publications, 2011, 2011 (Special) : 322-331. doi: 10.3934/proc.2011.2011.322

[17]

Xianfeng Ma, Ercai Chen. Pre-image variational principle for bundle random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 957-972. doi: 10.3934/dcds.2009.23.957

[18]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[19]

Meng Liu, Ke Wang. Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2495-2522. doi: 10.3934/dcds.2013.33.2495

[20]

Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]