September  2016, 21(7): 2255-2273. doi: 10.3934/dcdsb.2016046

Neurotransmitter concentrations in the presence of neural switching in one dimension

1. 

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, United States

2. 

Department of Mathematics, The Ohio State University, Columbus, OH 43210, United States

3. 

Department of Mathematics, Duke University, Durham, NC 27708, United States

Received  September 2015 Revised  March 2016 Published  August 2016

In volume transmission, neurons in one brain nucleus send their axons to a second nucleus where neurotransmitter is released into the extracellular space. One would like methods to calculate the average amount of neurotransmitter at different parts of the extracellular space, depending on neural properties and the geometry of the projections and the extracellular space. This question is interesting mathematically because the neuron terminals are both the sources (when they are firing) and the sinks (when they are quiescent) of neurotransmitter. We show how to formulate the questions as boundary value problems for the heat equation with stochastically switching boundary conditions. In one space dimension, we derive explicit formulas for the average concentration in terms of the parameters of the problems in two simple prototype examples and then explain how the same methods can be used to solve the general problem. Applications of the mathematical results to the neuroscience context are discussed.
Citation: Sean D. Lawley, Janet A. Best, Michael C. Reed. Neurotransmitter concentrations in the presence of neural switching in one dimension. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2255-2273. doi: 10.3934/dcdsb.2016046
References:
[1]

C. W. Atcherley, K. M. Wood, K. L. Parent, P. Hashemi and M. L. Heien, The coaction of tonic and phasic dopamine dynamics,, Chem. Commun., 51 (2015), 2235.  doi: 10.1039/C4CC06165A.  Google Scholar

[2]

P. Blandina, J. Goldfarb, B. Craddock-Royal and J. P. Green, Release of endogenous dopamine by stimulation of 5-hydroxytryptamine3 receptors in rat striatum,, J. Pharmacol. Exper. Therap., 251 (1989), 803.   Google Scholar

[3]

N. Bonhomme, P. Duerwaerdere, M. Moal and U. Spampinato, Evidence for 5-HT4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: A microdialysis study in the halothane-anesthetized rat,, Neuropharmacology, 34 (1995), 269.  doi: 10.1016/0028-3908(94)00145-I.  Google Scholar

[4]

P. C. Bressloff and S. D. Lawley, Escape from a potential well with a randomly switching boundary,, J. Phys. A, 48 (2015), 1751.  doi: 10.1088/1751-8113/48/22/225001.  Google Scholar

[5]

P. C. Bressloff and S. D. Lawley, Escape from subcellular domains with randomly switching boundaries,, Multiscale Model. Simul., 13 (2015), 1420.  doi: 10.1137/15M1019258.  Google Scholar

[6]

D. J. Brooks, Dopamine agonists: their role in the treatment of Parkinson's disease,, J. Neurol. Neurosurg Psychiatry, 68 (2000), 685.  doi: 10.1136/jnnp.68.6.685.  Google Scholar

[7]

H. Crauel, Random point attractors versus random set attractors,, J. London Math. Soc. (2), 63 (2001), 413.  doi: 10.1017/S0024610700001915.  Google Scholar

[8]

L. C. Daws, W. Koek and N. C. Mitchell, Revisiting serotonin reuptake inhibitors and the therapeutic effects of "uptake 2'' in psychiatric disorders,, ACS Chem. Neurosci., 4 (2013), 16.   Google Scholar

[9]

L. Daws, S. Montenez, W. Owens, G. Gould, A. Frazer, G. Toney and G. Gerhardt, Transport mechanisms governing serotonin clearance in vivo revealed by high speed chronoamperometry,, J Neurosci Meth, 143 (2005), 49.  doi: 10.1016/j.jneumeth.2004.09.011.  Google Scholar

[10]

R. Feldman, J. Meyer and L. Quenzer, Principles of Neuropharmacology,, Sinauer Associates, (1997).   Google Scholar

[11]

K. Fuxe, A. B. Dahlstrom, G. Jonsson, D. Marcellino, M. Guescini, M. Dam, P. Manger and L. Agnati, The discovery of central monoamine neurons gave volume transmission to the wired brain,, Prog. Neurobiol., 90 (2010), 82.  doi: 10.1016/j.pneurobio.2009.10.012.  Google Scholar

[12]

M. Hajos, S. E. Gartside, A. E. P. Villa and T. Sharp, Evidence for a repetitive (burst) firing pattern in a sub-population of 5-hydroxytryptamine neurons in the dorsal and median raphe nuclei of the rat,, Neuroscience, 69 (1995), 189.  doi: 10.1016/0306-4522(95)00227-A.  Google Scholar

[13]

E. Kandel, J. Schwartz, T. Jessell, S. Siegelbaum and A. Hudspeth, Principles of Neural Science,, 5th edition, (2012).   Google Scholar

[14]

S. D. Lawley, Boundary value problems for statistics of diffusion in a randomly switching environment: PDE and SDE perspectives,, SIAM J. Appl. Dyn. Syst., 15 (2016), 1410.  doi: 10.1137/15M1038426.  Google Scholar

[15]

S. D. Lawley and J. P. Keener, A new derivation of Robin boundary conditions through homogenization of a stochastically switching boundary,, SIAM J. Appl. Dyn. Syst., 14 (2015), 1845.  doi: 10.1137/15M1015182.  Google Scholar

[16]

S. D. Lawley, J. C. Mattingly and M. C. Reed, Stochastic switching in infinite dimensions with applications to random parabolic PDE,, SIAM Journal on Mathematical Analysis, 47 (2015), 3035.  doi: 10.1137/140976716.  Google Scholar

[17]

J. C. Mattingly, Ergodicity of $2$D Navier-Stokes equations with random forcing and large viscosity,, Comm. Math. Phys., 206 (1999), 273.  doi: 10.1007/s002200050706.  Google Scholar

[18]

T. Pasik and P. Pasik, Serotonergic afferents in the monkey neostriatum,, Acta Biol Acad Sci Hung, 33 (1982), 277.   Google Scholar

[19]

M. Reed, H. F. Nijhout and J. Best, Projecting biochemistry over long distances,, Math. Model. Nat. Phenom., 9 (2014), 133.  doi: 10.1051/mmnp/20149109.  Google Scholar

[20]

B. Schmalfuß, A random fixed point theorem based on Lyapunov exponents,, Random Comput. Dynam., 4 (1996), 257.   Google Scholar

[21]

J.-J. Soghomonian, G. Doucet and L. Descarries, Serotonin innervation in adult rat neostriatum i. quantified regional distribution,, Brain Research, 425 (1987), 85.  doi: 10.1016/0006-8993(87)90486-0.  Google Scholar

[22]

L. Tao and C. Nicholson, Diffusion of albumins in rat cortical slices and relevance to volume transmission,, Neuroscience, 75 (1996), 839.  doi: 10.1016/0306-4522(96)00303-X.  Google Scholar

[23]

, I. Wolfram Research,, Mathematica, (2012).   Google Scholar

[24]

K. M. Wood, A. Zeqja, H. F. Nijhout, M. C. Reed, J. A. Best and P. Hashemi, Voltametric and mathematical evidence for dual transport mediation of serotonin clearance in vivo,, J. Neurochem., 130 (2014), 351.   Google Scholar

show all references

References:
[1]

C. W. Atcherley, K. M. Wood, K. L. Parent, P. Hashemi and M. L. Heien, The coaction of tonic and phasic dopamine dynamics,, Chem. Commun., 51 (2015), 2235.  doi: 10.1039/C4CC06165A.  Google Scholar

[2]

P. Blandina, J. Goldfarb, B. Craddock-Royal and J. P. Green, Release of endogenous dopamine by stimulation of 5-hydroxytryptamine3 receptors in rat striatum,, J. Pharmacol. Exper. Therap., 251 (1989), 803.   Google Scholar

[3]

N. Bonhomme, P. Duerwaerdere, M. Moal and U. Spampinato, Evidence for 5-HT4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: A microdialysis study in the halothane-anesthetized rat,, Neuropharmacology, 34 (1995), 269.  doi: 10.1016/0028-3908(94)00145-I.  Google Scholar

[4]

P. C. Bressloff and S. D. Lawley, Escape from a potential well with a randomly switching boundary,, J. Phys. A, 48 (2015), 1751.  doi: 10.1088/1751-8113/48/22/225001.  Google Scholar

[5]

P. C. Bressloff and S. D. Lawley, Escape from subcellular domains with randomly switching boundaries,, Multiscale Model. Simul., 13 (2015), 1420.  doi: 10.1137/15M1019258.  Google Scholar

[6]

D. J. Brooks, Dopamine agonists: their role in the treatment of Parkinson's disease,, J. Neurol. Neurosurg Psychiatry, 68 (2000), 685.  doi: 10.1136/jnnp.68.6.685.  Google Scholar

[7]

H. Crauel, Random point attractors versus random set attractors,, J. London Math. Soc. (2), 63 (2001), 413.  doi: 10.1017/S0024610700001915.  Google Scholar

[8]

L. C. Daws, W. Koek and N. C. Mitchell, Revisiting serotonin reuptake inhibitors and the therapeutic effects of "uptake 2'' in psychiatric disorders,, ACS Chem. Neurosci., 4 (2013), 16.   Google Scholar

[9]

L. Daws, S. Montenez, W. Owens, G. Gould, A. Frazer, G. Toney and G. Gerhardt, Transport mechanisms governing serotonin clearance in vivo revealed by high speed chronoamperometry,, J Neurosci Meth, 143 (2005), 49.  doi: 10.1016/j.jneumeth.2004.09.011.  Google Scholar

[10]

R. Feldman, J. Meyer and L. Quenzer, Principles of Neuropharmacology,, Sinauer Associates, (1997).   Google Scholar

[11]

K. Fuxe, A. B. Dahlstrom, G. Jonsson, D. Marcellino, M. Guescini, M. Dam, P. Manger and L. Agnati, The discovery of central monoamine neurons gave volume transmission to the wired brain,, Prog. Neurobiol., 90 (2010), 82.  doi: 10.1016/j.pneurobio.2009.10.012.  Google Scholar

[12]

M. Hajos, S. E. Gartside, A. E. P. Villa and T. Sharp, Evidence for a repetitive (burst) firing pattern in a sub-population of 5-hydroxytryptamine neurons in the dorsal and median raphe nuclei of the rat,, Neuroscience, 69 (1995), 189.  doi: 10.1016/0306-4522(95)00227-A.  Google Scholar

[13]

E. Kandel, J. Schwartz, T. Jessell, S. Siegelbaum and A. Hudspeth, Principles of Neural Science,, 5th edition, (2012).   Google Scholar

[14]

S. D. Lawley, Boundary value problems for statistics of diffusion in a randomly switching environment: PDE and SDE perspectives,, SIAM J. Appl. Dyn. Syst., 15 (2016), 1410.  doi: 10.1137/15M1038426.  Google Scholar

[15]

S. D. Lawley and J. P. Keener, A new derivation of Robin boundary conditions through homogenization of a stochastically switching boundary,, SIAM J. Appl. Dyn. Syst., 14 (2015), 1845.  doi: 10.1137/15M1015182.  Google Scholar

[16]

S. D. Lawley, J. C. Mattingly and M. C. Reed, Stochastic switching in infinite dimensions with applications to random parabolic PDE,, SIAM Journal on Mathematical Analysis, 47 (2015), 3035.  doi: 10.1137/140976716.  Google Scholar

[17]

J. C. Mattingly, Ergodicity of $2$D Navier-Stokes equations with random forcing and large viscosity,, Comm. Math. Phys., 206 (1999), 273.  doi: 10.1007/s002200050706.  Google Scholar

[18]

T. Pasik and P. Pasik, Serotonergic afferents in the monkey neostriatum,, Acta Biol Acad Sci Hung, 33 (1982), 277.   Google Scholar

[19]

M. Reed, H. F. Nijhout and J. Best, Projecting biochemistry over long distances,, Math. Model. Nat. Phenom., 9 (2014), 133.  doi: 10.1051/mmnp/20149109.  Google Scholar

[20]

B. Schmalfuß, A random fixed point theorem based on Lyapunov exponents,, Random Comput. Dynam., 4 (1996), 257.   Google Scholar

[21]

J.-J. Soghomonian, G. Doucet and L. Descarries, Serotonin innervation in adult rat neostriatum i. quantified regional distribution,, Brain Research, 425 (1987), 85.  doi: 10.1016/0006-8993(87)90486-0.  Google Scholar

[22]

L. Tao and C. Nicholson, Diffusion of albumins in rat cortical slices and relevance to volume transmission,, Neuroscience, 75 (1996), 839.  doi: 10.1016/0306-4522(96)00303-X.  Google Scholar

[23]

, I. Wolfram Research,, Mathematica, (2012).   Google Scholar

[24]

K. M. Wood, A. Zeqja, H. F. Nijhout, M. C. Reed, J. A. Best and P. Hashemi, Voltametric and mathematical evidence for dual transport mediation of serotonin clearance in vivo,, J. Neurochem., 130 (2014), 351.   Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[5]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[6]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[7]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[10]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[11]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[12]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[13]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[14]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[15]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[18]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[19]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[20]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]