September  2016, 21(7): 2275-2291. doi: 10.3934/dcdsb.2016047

Controlling stochasticity in epithelial-mesenchymal transition through multiple intermediate cellular states

1. 

Department of Mathematics, Univ. of California Irvine, Irvine, CA 92697-3875, United States, United States

2. 

Department of mathematics, University of California, CA, 92697-3875

Received  February 2016 Revised  May 2016 Published  August 2016

Epithelial-mesenchymal transition (EMT) is an instance of cellular plasticity that plays critical roles in development, regeneration and cancer progression. Recent studies indicate that the transition between epithelial and mesenchymal states is a multi-step and reversible process in which several intermediate phenotypes might coexist. These intermediate states correspond to various forms of stem-like cells in the EMT system, but the function of the multi-step transition or the multiple stem cell phenotypes is unclear. Here, we use mathematical models to show that multiple intermediate phenotypes in the EMT system help to attenuate the overall fluctuations of the cell population in terms of phenotypic compositions, thereby stabilizing a heterogeneous cell population in the EMT spectrum. We found that the ability of the system to attenuate noise on the intermediate states depends on the number of intermediate states, indicating the stem-cell population is more stable when it has more sub-states. Our study reveals a novel advantage of multiple intermediate EMT phenotypes in terms of systems design, and it sheds light on the general design principle of heterogeneous stem cell population.
Citation: Catherine Ha Ta, Qing Nie, Tian Hong. Controlling stochasticity in epithelial-mesenchymal transition through multiple intermediate cellular states. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2275-2291. doi: 10.3934/dcdsb.2016047
References:
[1]

J. Baulida and A. Garcia de Herreros, Snail1-driven plasticity of epithelial and mesenchymal cells sustains cancer malignancy,, Biochim Biophys Acta, 1856 (2015), 55. doi: 10.1016/j.bbcan.2015.05.005. Google Scholar

[2]

T. Brabletz, A. Jung and S. Reu, et al., Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment,, Proc Natl Acad Sci U S A, 98 (2001), 10356. Google Scholar

[3]

A. Q. Cai, K. Radtke and A. Linville, et al., Cellular retinoic acid-binding proteins are essential for hindbrain patterning and signal robustness in zebrafish,, Development, 139 (2012), 2150. doi: 10.1242/dev.077065. Google Scholar

[4]

H. H. Chang, M. Hemberg and M. Barahona, et al., Transcriptome-wide noise controls lineage choice in mammalian progenitor cells,, Nature, 453 (2008), 544. doi: 10.1038/nature06965. Google Scholar

[5]

J. Chen, Q. Han and D. Pei, EMT and MET as paradigms for cell fate switching,, J Mol Cell Biol, 4 (2012), 66. doi: 10.1093/jmcb/mjr045. Google Scholar

[6]

M. Chen, L. Wang and C. C. Liu, et al., Noise attenuation in the ON and OFF states of biological switches,, ACS Synth Biol, 2 (2013), 587. doi: 10.1021/sb400044g. Google Scholar

[7]

S. Di Talia, J. M. Skotheim and J. M. Bean, et al., The effects of molecular noise and size control on variability in the budding yeast cell cycle,, Nature, 448 (2007), 947. doi: 10.1038/nature06072. Google Scholar

[8]

S. Gaudet, S. L. Spencer and W. W. Chen, et al., Exploring the contextual sensitivity of factors that determine cell-to-cell variability in receptor-mediated apoptosis,, PLoS Comput Biol, 8 (2012). doi: 10.1371/journal.pcbi.1002482. Google Scholar

[9]

A. Grosse-Wilde, A. Fouquier d'Herouel and E. McIntosh, et al., Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival,, PLoS One, 10 (2015). doi: 10.1371/journal.pone.0126522. Google Scholar

[10]

Y. Hart, Y. E. Antebi and A. E. Mayo, et al., Design principles of cell circuits with paradoxical components,, Proc Natl Acad Sci U S A, 109 (2012), 8346. doi: 10.1073/pnas.1117475109. Google Scholar

[11]

K. Hayashi, S. de Sousa Lopes and F. Tang, et al., Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states,, Cell Stem Cell, 3 (2008), 391. doi: 10.1016/j.stem.2008.07.027. Google Scholar

[12]

T. Hong, K. Watanabe and C. Ta, et al., An ovol2-zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states,, PLoS Comput Biol, 11 (2015). doi: 10.1371/journal.pcbi.1004569. Google Scholar

[13]

T. Hong, C. Oguz and J. J. Tyson, A mathematical framework for understanding four-dimensional heterogeneous differentiation of CD4+ T cells,, Bulletin of Mathematical Biology, 77 (2015), 1046. doi: 10.1007/s11538-015-0076-6. Google Scholar

[14]

R. Y. Huang, M. K. Wong and T. Z. Tan, et al., An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530),, Cell Death Dis, 4 (2013). doi: 10.1038/cddis.2013.442. Google Scholar

[15]

M. K. Jolly, D. Jia and M. Boareto, et al., Coupling the modules of EMT and stemness: A tunable 'stemness window' model,, Oncotarget, 6 (2015), 25161. doi: 10.18632/oncotarget.4629. Google Scholar

[16]

R. Kalluri and R. A. Weinberg, The basics of epithelial-mesenchymal transition,, The Journal of Clinical Investigation, 119 (2009), 1420. Google Scholar

[17]

J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes,, Springer-Verlag, (1987). doi: 10.1007/978-1-4612-1054-2. Google Scholar

[18]

R. Kubo, The fluctuation-dissipation theorem,, Reports on Progress in Physics, 29 (1966), 255. doi: 10.1088/0034-4885/29/1/306. Google Scholar

[19]

D. A. Lawson, N. R. Bhakta and K. Kessenbrock, et al., Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells,, Nature, 526 (2015), 131. doi: 10.1038/nature15260. Google Scholar

[20]

J. Lei, S. A. Levin and Q. Nie, Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation,, Proc Natl Acad Sci U S A, 111 (2014). doi: 10.1073/pnas.1324267111. Google Scholar

[21]

W. A. Lim, C. M. Lee and C. Tang, Design principles of regulatory networks: Searching for the molecular algorithms of the cell,, Mol Cell, 49 (2013), 202. doi: 10.1016/j.molcel.2012.12.020. Google Scholar

[22]

X. Liu, S. Johnson and S. Liu, et al., Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy,, Sci Rep, (2013). Google Scholar

[23]

W. C. Lo, C. S. Chou and K. K. Gokoffski, et al., Feedback regulation in multistage cell lineages,, Math Biosci Eng, 6 (2009), 59. doi: 10.3934/mbe.2009.6.59. Google Scholar

[24]

M. Lu, M. K. Jolly and H. Levine, et al., MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination,, Proc Natl Acad Sci U S A, 110 (2013), 18144. doi: 10.1073/pnas.1318192110. Google Scholar

[25]

S. A. Mani, W. Guo and M. J. Liao, et al., The epithelial-mesenchymal transition generates cells with properties of stem cells,, Cell, 133 (2008), 704. doi: 10.1016/j.cell.2008.03.027. Google Scholar

[26]

K. V. Price, R. M. Storn and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization,, Springer, (2005). Google Scholar

[27]

Y. Shen, C. Shi and W. Wei, et al., The heterogeneity and dynamic equilibrium of rat embryonic stem cells,, Cell Res, 21 (2011), 1143. doi: 10.1038/cr.2011.98. Google Scholar

[28]

M. S. Sosa, P. Bragado and J. A. Aguirre-Ghiso, Mechanisms of disseminated cancer cell dormancy: An awakening field,, Nat Rev Cancer, 14 (2014), 611. doi: 10.1038/nrc3793. Google Scholar

[29]

W. L. Tam and R. A. Weinberg, The epigenetics of epithelial-mesenchymal plasticity in cancer,, Nature Medicine, 19 (2013), 1438. doi: 10.1038/nm.3336. Google Scholar

[30]

X. J. Tian, H. Zhang and J. Xing, Coupled reversible and irreversible bistable switches underlying TGF-$\beta$-induced epithelial to mesenchymal transition,, Biophysical journal, 105 (2013), 1079. Google Scholar

[31]

J. J. Tyson and B. Novak, Functional motifs in biochemical reaction networks,, Annu Rev Phys Chem, 61 (2010), 219. doi: 10.1146/annurev.physchem.012809.103457. Google Scholar

[32]

N. G. Van Kampen, Stochastic Processes in Physics and Chemistry,, $3^{rd}$ edition, (2007). Google Scholar

[33]

L. Wang, J. Xin and Q. Nie, A critical quantity for noise attenuation in feedback systems,, PLoS Comput Biol, 6 (2010). doi: 10.1371/journal.pcbi.1000764. Google Scholar

[34]

W. Weston, J. Zayas and R. Perez, et al., Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets,, Sci Rep, 4 (2014). doi: 10.1038/srep05199. Google Scholar

[35]

X. Ye, W. L. Tam and T. Shibue, et al., Distinct EMT programs control normal mammary stem cells and tumour-initiating cells,, Nature, 525 (2015), 256. doi: 10.1038/nature14897. Google Scholar

[36]

J. Zhang, X. J. Tian and H. Zhang, et al., TGF-$\beta$-induced Epithelial-To-Mesenchymal Transition Proceeds Through Stepwise Activation of Multiple Feedback Loops,, Science Signaling, (2014). Google Scholar

[37]

L. Zheng, M. Chen and Q. Nie, External noise control in inherently stochastic biological systems,, J Math Phys, 53 (2012). doi: 10.1063/1.4762825. Google Scholar

[38]

, Differential Evolution (DE) for Continuous Function Optimization (an algorithm by Kenneth Price and Rainer Storn),, Accessed in May 2016. Available from: , (2016). Google Scholar

show all references

References:
[1]

J. Baulida and A. Garcia de Herreros, Snail1-driven plasticity of epithelial and mesenchymal cells sustains cancer malignancy,, Biochim Biophys Acta, 1856 (2015), 55. doi: 10.1016/j.bbcan.2015.05.005. Google Scholar

[2]

T. Brabletz, A. Jung and S. Reu, et al., Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment,, Proc Natl Acad Sci U S A, 98 (2001), 10356. Google Scholar

[3]

A. Q. Cai, K. Radtke and A. Linville, et al., Cellular retinoic acid-binding proteins are essential for hindbrain patterning and signal robustness in zebrafish,, Development, 139 (2012), 2150. doi: 10.1242/dev.077065. Google Scholar

[4]

H. H. Chang, M. Hemberg and M. Barahona, et al., Transcriptome-wide noise controls lineage choice in mammalian progenitor cells,, Nature, 453 (2008), 544. doi: 10.1038/nature06965. Google Scholar

[5]

J. Chen, Q. Han and D. Pei, EMT and MET as paradigms for cell fate switching,, J Mol Cell Biol, 4 (2012), 66. doi: 10.1093/jmcb/mjr045. Google Scholar

[6]

M. Chen, L. Wang and C. C. Liu, et al., Noise attenuation in the ON and OFF states of biological switches,, ACS Synth Biol, 2 (2013), 587. doi: 10.1021/sb400044g. Google Scholar

[7]

S. Di Talia, J. M. Skotheim and J. M. Bean, et al., The effects of molecular noise and size control on variability in the budding yeast cell cycle,, Nature, 448 (2007), 947. doi: 10.1038/nature06072. Google Scholar

[8]

S. Gaudet, S. L. Spencer and W. W. Chen, et al., Exploring the contextual sensitivity of factors that determine cell-to-cell variability in receptor-mediated apoptosis,, PLoS Comput Biol, 8 (2012). doi: 10.1371/journal.pcbi.1002482. Google Scholar

[9]

A. Grosse-Wilde, A. Fouquier d'Herouel and E. McIntosh, et al., Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival,, PLoS One, 10 (2015). doi: 10.1371/journal.pone.0126522. Google Scholar

[10]

Y. Hart, Y. E. Antebi and A. E. Mayo, et al., Design principles of cell circuits with paradoxical components,, Proc Natl Acad Sci U S A, 109 (2012), 8346. doi: 10.1073/pnas.1117475109. Google Scholar

[11]

K. Hayashi, S. de Sousa Lopes and F. Tang, et al., Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states,, Cell Stem Cell, 3 (2008), 391. doi: 10.1016/j.stem.2008.07.027. Google Scholar

[12]

T. Hong, K. Watanabe and C. Ta, et al., An ovol2-zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states,, PLoS Comput Biol, 11 (2015). doi: 10.1371/journal.pcbi.1004569. Google Scholar

[13]

T. Hong, C. Oguz and J. J. Tyson, A mathematical framework for understanding four-dimensional heterogeneous differentiation of CD4+ T cells,, Bulletin of Mathematical Biology, 77 (2015), 1046. doi: 10.1007/s11538-015-0076-6. Google Scholar

[14]

R. Y. Huang, M. K. Wong and T. Z. Tan, et al., An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530),, Cell Death Dis, 4 (2013). doi: 10.1038/cddis.2013.442. Google Scholar

[15]

M. K. Jolly, D. Jia and M. Boareto, et al., Coupling the modules of EMT and stemness: A tunable 'stemness window' model,, Oncotarget, 6 (2015), 25161. doi: 10.18632/oncotarget.4629. Google Scholar

[16]

R. Kalluri and R. A. Weinberg, The basics of epithelial-mesenchymal transition,, The Journal of Clinical Investigation, 119 (2009), 1420. Google Scholar

[17]

J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes,, Springer-Verlag, (1987). doi: 10.1007/978-1-4612-1054-2. Google Scholar

[18]

R. Kubo, The fluctuation-dissipation theorem,, Reports on Progress in Physics, 29 (1966), 255. doi: 10.1088/0034-4885/29/1/306. Google Scholar

[19]

D. A. Lawson, N. R. Bhakta and K. Kessenbrock, et al., Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells,, Nature, 526 (2015), 131. doi: 10.1038/nature15260. Google Scholar

[20]

J. Lei, S. A. Levin and Q. Nie, Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation,, Proc Natl Acad Sci U S A, 111 (2014). doi: 10.1073/pnas.1324267111. Google Scholar

[21]

W. A. Lim, C. M. Lee and C. Tang, Design principles of regulatory networks: Searching for the molecular algorithms of the cell,, Mol Cell, 49 (2013), 202. doi: 10.1016/j.molcel.2012.12.020. Google Scholar

[22]

X. Liu, S. Johnson and S. Liu, et al., Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy,, Sci Rep, (2013). Google Scholar

[23]

W. C. Lo, C. S. Chou and K. K. Gokoffski, et al., Feedback regulation in multistage cell lineages,, Math Biosci Eng, 6 (2009), 59. doi: 10.3934/mbe.2009.6.59. Google Scholar

[24]

M. Lu, M. K. Jolly and H. Levine, et al., MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination,, Proc Natl Acad Sci U S A, 110 (2013), 18144. doi: 10.1073/pnas.1318192110. Google Scholar

[25]

S. A. Mani, W. Guo and M. J. Liao, et al., The epithelial-mesenchymal transition generates cells with properties of stem cells,, Cell, 133 (2008), 704. doi: 10.1016/j.cell.2008.03.027. Google Scholar

[26]

K. V. Price, R. M. Storn and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization,, Springer, (2005). Google Scholar

[27]

Y. Shen, C. Shi and W. Wei, et al., The heterogeneity and dynamic equilibrium of rat embryonic stem cells,, Cell Res, 21 (2011), 1143. doi: 10.1038/cr.2011.98. Google Scholar

[28]

M. S. Sosa, P. Bragado and J. A. Aguirre-Ghiso, Mechanisms of disseminated cancer cell dormancy: An awakening field,, Nat Rev Cancer, 14 (2014), 611. doi: 10.1038/nrc3793. Google Scholar

[29]

W. L. Tam and R. A. Weinberg, The epigenetics of epithelial-mesenchymal plasticity in cancer,, Nature Medicine, 19 (2013), 1438. doi: 10.1038/nm.3336. Google Scholar

[30]

X. J. Tian, H. Zhang and J. Xing, Coupled reversible and irreversible bistable switches underlying TGF-$\beta$-induced epithelial to mesenchymal transition,, Biophysical journal, 105 (2013), 1079. Google Scholar

[31]

J. J. Tyson and B. Novak, Functional motifs in biochemical reaction networks,, Annu Rev Phys Chem, 61 (2010), 219. doi: 10.1146/annurev.physchem.012809.103457. Google Scholar

[32]

N. G. Van Kampen, Stochastic Processes in Physics and Chemistry,, $3^{rd}$ edition, (2007). Google Scholar

[33]

L. Wang, J. Xin and Q. Nie, A critical quantity for noise attenuation in feedback systems,, PLoS Comput Biol, 6 (2010). doi: 10.1371/journal.pcbi.1000764. Google Scholar

[34]

W. Weston, J. Zayas and R. Perez, et al., Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets,, Sci Rep, 4 (2014). doi: 10.1038/srep05199. Google Scholar

[35]

X. Ye, W. L. Tam and T. Shibue, et al., Distinct EMT programs control normal mammary stem cells and tumour-initiating cells,, Nature, 525 (2015), 256. doi: 10.1038/nature14897. Google Scholar

[36]

J. Zhang, X. J. Tian and H. Zhang, et al., TGF-$\beta$-induced Epithelial-To-Mesenchymal Transition Proceeds Through Stepwise Activation of Multiple Feedback Loops,, Science Signaling, (2014). Google Scholar

[37]

L. Zheng, M. Chen and Q. Nie, External noise control in inherently stochastic biological systems,, J Math Phys, 53 (2012). doi: 10.1063/1.4762825. Google Scholar

[38]

, Differential Evolution (DE) for Continuous Function Optimization (an algorithm by Kenneth Price and Rainer Storn),, Accessed in May 2016. Available from: , (2016). Google Scholar

[1]

Tomas Alarcon, Philipp Getto, Anna Marciniak-Czochra, Maria dM Vivanco. A model for stem cell population dynamics with regulated maturation delay. Conference Publications, 2011, 2011 (Special) : 32-43. doi: 10.3934/proc.2011.2011.32

[2]

Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19

[3]

Mostafa Adimy, Abdennasser Chekroun, Tarik-Mohamed Touaoula. Age-structured and delay differential-difference model of hematopoietic stem cell dynamics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2765-2791. doi: 10.3934/dcdsb.2015.20.2765

[4]

Cristina Anton, Alan Yong. Stochastic dynamics and survival analysis of a cell population model with random perturbations. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1077-1098. doi: 10.3934/mbe.2018048

[5]

Fadia Bekkal-Brikci, Giovanna Chiorino, Khalid Boushaba. G1/S transition and cell population dynamics. Networks & Heterogeneous Media, 2009, 4 (1) : 67-90. doi: 10.3934/nhm.2009.4.67

[6]

Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1

[7]

Qiaojun Situ, Jinzhi Lei. A mathematical model of stem cell regeneration with epigenetic state transitions. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1379-1397. doi: 10.3934/mbe.2017071

[8]

Oleg U. Kirnasovsky, Yuri Kogan, Zvia Agur. Resilience in stem cell renewal: development of the Agur--Daniel--Ginosar model. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 129-148. doi: 10.3934/dcdsb.2008.10.129

[9]

Janet Dyson, Rosanna Villella-Bressan, G. F. Webb. The evolution of a tumor cord cell population. Communications on Pure & Applied Analysis, 2004, 3 (3) : 331-352. doi: 10.3934/cpaa.2004.3.331

[10]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[11]

A. Chauviere, T. Hillen, L. Preziosi. Modeling cell movement in anisotropic and heterogeneous network tissues. Networks & Heterogeneous Media, 2007, 2 (2) : 333-357. doi: 10.3934/nhm.2007.2.333

[12]

Qi Wang, Lifang Huang, Kunwen Wen, Jianshe Yu. The mean and noise of stochastic gene transcription with cell division. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1255-1270. doi: 10.3934/mbe.2018058

[13]

Marco Scianna, Luigi Preziosi, Katarina Wolf. A Cellular Potts model simulating cell migration on and in matrix environments. Mathematical Biosciences & Engineering, 2013, 10 (1) : 235-261. doi: 10.3934/mbe.2013.10.235

[14]

Shinji Nakaoka, Hisashi Inaba. Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences & Engineering, 2014, 11 (2) : 363-384. doi: 10.3934/mbe.2014.11.363

[15]

Ricardo Borges, Àngel Calsina, Sílvia Cuadrado. Equilibria of a cyclin structured cell population model. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 613-627. doi: 10.3934/dcdsb.2009.11.613

[16]

A. Chauviere, L. Preziosi, T. Hillen. Modeling the motion of a cell population in the extracellular matrix. Conference Publications, 2007, 2007 (Special) : 250-259. doi: 10.3934/proc.2007.2007.250

[17]

Alexis B. Cook, Daniel R. Ziazadeh, Jianfeng Lu, Trachette L. Jackson. An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1219-1235. doi: 10.3934/mbe.2015.12.1219

[18]

David S. Ross, Christina Battista, Antonio Cabal, Khamir Mehta. Dynamics of bone cell signaling and PTH treatments of osteoporosis. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2185-2200. doi: 10.3934/dcdsb.2012.17.2185

[19]

Yangjin Kim, Hans G. Othmer. Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1141-1156. doi: 10.3934/mbe.2015.12.1141

[20]

Yuchi Qiu, Weitao Chen, Qing Nie. Stochastic dynamics of cell lineage in tissue homeostasis. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3971-3994. doi: 10.3934/dcdsb.2018339

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]