• Previous Article
    Strong Allee effect in a stochastic logistic model with mate limitation and stochastic immigration
  • DCDS-B Home
  • This Issue
  • Next Article
    Controlling stochasticity in epithelial-mesenchymal transition through multiple intermediate cellular states
September  2016, 21(7): 2293-2319. doi: 10.3934/dcdsb.2016048

Kolmogorov-type systems with regime-switching jump diffusion perturbations

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

2. 

Department of Mathematics, Wayne State University, Detroit, Michigan 48202

3. 

Centre for Actuarial Studies, Department of Economics, The University of Melbourne, VIC 3010, Australia

Received  August 2015 Revised  November 2015 Published  August 2016

Population systems are often subject to various different types of environmental noises. This paper considers a class of Kolmogorov-type systems perturbed by three different types of noise including Brownian motions, Markovian switching processes, and Poisson jumps, which is described by a regime-switching jump diffusion process. This paper examines these three different types of noises and determines their effects on the properties of the systems. The properties to be studied include existence and uniqueness of global positive solutions, boundedness of this positive solution, and asymptotic growth property, and extinction in the senses of the almost sure and the $p$th moment. Finally, this paper also considers a stochastic Lotka-Volterra system with regime-switching jump diffusion processes as a special case.
Citation: Fuke Wu, George Yin, Zhuo Jin. Kolmogorov-type systems with regime-switching jump diffusion perturbations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2293-2319. doi: 10.3934/dcdsb.2016048
References:
[1]

W. J. Anderson, Continuous-Time Markov Chains,, Springer-Verlag, (1991).  doi: 10.1007/978-1-4612-3038-0.  Google Scholar

[2]

D. Applebaum, Levy Processes and Stochastic Calculus,, $2^{nd}$ Edition, (2009).  doi: 10.1017/CBO9780511809781.  Google Scholar

[3]

D. Applebaum and M. Siakalli, Asymptotic stability properties of stochastic differential equations driven by Lévy noise,, Journal of Applied Probability, 46 (2009), 1116.   Google Scholar

[4]

A. Bahar and X. Mao, Stochastic delay Lotka-Volterra model,, Journal of Mathematical Analysis and Applications, 292 (2004), 364.   Google Scholar

[5]

A. Bahar and X. Mao, Stochastic delay population dynamcis,, International Journal of pure and applied mathematics, 11 (2004), 377.   Google Scholar

[6]

J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps,, Nonlinear Analysis: Theory, 74 (2011), 6601.  doi: 10.1016/j.na.2011.06.043.  Google Scholar

[7]

J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise,, Journal of Mathematical Analysis and Applications, 391 (2012), 363.  doi: 10.1016/j.jmaa.2012.02.043.  Google Scholar

[8]

N. H. Dang, N. H. Du and G. Yin, Existence of stationary distributions for Kolmogorov systems of competitive type under telegraph noise,, Journal of Differential Equations, 257 (2014), 2078.  doi: 10.1016/j.jde.2014.05.029.  Google Scholar

[9]

A. Dembo and O. Zeitouni, Large Deviation Techniques and Applications,, $2^{nd}$, (1998).  doi: 10.1007/978-1-4612-5320-4.  Google Scholar

[10]

J. D. Deuschel and D. W. Stroock, Large Deviations,, Academic Press, (1989).   Google Scholar

[11]

M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, I,, Communications on Pure and Applied Mathematics, 28 (1975), 1.   Google Scholar

[12]

M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, II,, Communications on Pure and Applied Mathematics, 28 (1975), 279.   Google Scholar

[13]

M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, III,, Communications on Pure and Applied Mathematics, 29 (1976), 389.  doi: 10.1002/cpa.3160290405.  Google Scholar

[14]

M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, IV,, Communications on Pure and Applied Mathematics, 36 (1983), 183.  doi: 10.1002/cpa.3160360204.  Google Scholar

[15]

N. H. Du and N. H. Dang, Dynamics of Kolmogorov systems of competitive type under the telegraph noise,, Journal of Differential Equations, 250 (2011), 386.  doi: 10.1016/j.jde.2010.08.023.  Google Scholar

[16]

N. H. Du, D. H. Nguyen and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models,, to appear in Journal of Applied Probability., ().  doi: 10.1017/jpr.2015.18.  Google Scholar

[17]

T. Faria and J. J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks,, Journal of Differential Equations, 244 (2008), 1049.  doi: 10.1016/j.jde.2007.12.005.  Google Scholar

[18]

B. M. Gary, A functional equation characterizing monomial functions used in permanence theory for ecological differential equation,, Universitatis Iagellonicae acta mathematica, 42 (2004), 69.   Google Scholar

[19]

T. C. Gard, Persistence in stochastic food web models,, Bulletin of Mathematical Biology, 46 (1984), 357.  doi: 10.1007/BF02462011.  Google Scholar

[20]

T. C. Gard, Stability for multispecies population models in random environments,, Nonlinear Analysis, 10 (1986), 1411.  doi: 10.1016/0362-546X(86)90111-2.  Google Scholar

[21]

T. C. Gard, Introduction to Stochastic Differential Equations,, Dekker, (1988).   Google Scholar

[22]

K. Gopalsamy, Global asymptotic stability in a periodic Lotka-Volterra system,, The Journal of the Australian Mathematical Society. Series B, 27 (1985), 66.  doi: 10.1017/S0334270000004768.  Google Scholar

[23]

X. Han, Z. Teng and D. Xiao, Persistence and average persistence of a nonautonomous Kolmogorov system,, Chaos Solitons Fractals, 30 (2006), 748.  doi: 10.1016/j.chaos.2006.04.026.  Google Scholar

[24]

O. Kallenberg, Foundations of Modern Probability,, $2^{nd}$ Edition, (2002).   Google Scholar

[25]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Academic press, (1993).   Google Scholar

[26]

Y. Li and Y. Kuang, Periodic solutions of periodic delay Lotka-Volterra equations and systems,, Journal of Mathematical Analysis and Applications, 255 (2001), 260.  doi: 10.1006/jmaa.2000.7248.  Google Scholar

[27]

M. Liu and K. Wang, Stochastic Lotka-Volterra systems with Lévy noise,, Journal of Mathematical Analysis and Applications, 410 (2014), 750.  doi: 10.1016/j.jmaa.2013.07.078.  Google Scholar

[28]

Q. Luo and X. Mao, Stochastic population dynamics under regime switching,, Journal of Mathematical Analysis and applications, 334 (2007), 69.  doi: 10.1016/j.jmaa.2006.12.032.  Google Scholar

[29]

Q. Luo and X. Mao, Stochastic population dynamics under regime switching II,, Journal of Mathematical Analysis and Applications, 355 (2009), 577.  doi: 10.1016/j.jmaa.2009.02.010.  Google Scholar

[30]

E. Lungu and B. Øksendal, Optimal harvesting from a population in a stochastic crowded environment,, Mathematical Biosciences, 145 (1997), 47.  doi: 10.1016/S0025-5564(97)00029-1.  Google Scholar

[31]

E. Lungu and B. Øksendal, Optimal Harvesting from Interacting Populations in a Stochastic Environment,, Bernoulli, 7 (2001), 527.  doi: 10.2307/3318500.  Google Scholar

[32]

X. Mao, G. Marion and E. Renshaw, Environmental noise supresses explosion in population dynamics,, Stochastic Processes and their Applications, 97 (2002), 95.  doi: 10.1016/S0304-4149(01)00126-0.  Google Scholar

[33]

X. Mao, Delay population dynamics and environmental noise,, Stochastics and Dynamics, 5 (2005), 149.  doi: 10.1142/S021949370500133X.  Google Scholar

[34]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching,, Imperial College Press, (2006).  doi: 10.1142/p473.  Google Scholar

[35]

X. Mao, Stochastic Differential Equations and Applications,, $2^{nd}$ Edition, (2008).  doi: 10.1533/9780857099402.  Google Scholar

[36]

J. D. Murray, Mathematical Biology, I. an Introduction,, $3^{rd}$ Edition, (2002).   Google Scholar

[37]

H. D. Nguyen, N. H. Du and G. Yin, Existence of stationary distributions for Kolmogorov systems of competitive type under telegraph noise,, Journal of Differential Equations, 257 (2014), 2078.  doi: 10.1016/j.jde.2014.05.029.  Google Scholar

[38]

S. Pang, F. Deng and X. Mao, Asymptotic properties of stochastic population dynamics,, Dynamics of Continuous Discrete and Impulsive Systems Series A, 15 (2008), 603.   Google Scholar

[39]

P. E. Protter, Stochastic Integration and Differential Equations,, $2^{nd}$ Edition, (2004).   Google Scholar

[40]

M. Slatkin, The dynamics of a population in a Markovian environment,, Ecology, 59 (1978), 249.  doi: 10.2307/1936370.  Google Scholar

[41]

Y. Takeuchi, Global Dynamical Properties of Lotka-Volterra Systems,, World Scientific, (1996).  doi: 10.1142/9789812830548.  Google Scholar

[42]

Y. Takeuchi, N. H. Du, N. T. Hieu and K. Sato, Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment,, Journal of Mathematical Analysis and applications, 323 (2006), 938.  doi: 10.1016/j.jmaa.2005.11.009.  Google Scholar

[43]

B. Tang and Y. Kuang, Permanence in Kolmogorov-type systems of nonautonomous functional differential equations,, Journal of Mathematical Analysis and Applications, 197 (1996), 427.  doi: 10.1006/jmaa.1996.0030.  Google Scholar

[44]

Z. Teng, The almost periodic Kolmogorov competitive sysems,, Nonlinear Analysis, 42 (2000), 1221.  doi: 10.1016/S0362-546X(99)00149-2.  Google Scholar

[45]

F. Wu and S. Hu, Stochastic functional Kolmogorov-type population dynamics,, Journal of Mathematical analysis and applications, 347 (2008), 534.  doi: 10.1016/j.jmaa.2008.06.038.  Google Scholar

[46]

F. Wu and S. Hu, Suppression and stabilisation of noise,, International Journal of Control, 82 (2009), 2150.  doi: 10.1080/00207170902968108.  Google Scholar

[47]

F. Wu and Y. Xu, Stochastic Lotka-Volterra population dynamics with infinite delay,, SIAM Journal on Applied Mathematics, 70 (2009), 641.  doi: 10.1137/080719194.  Google Scholar

[48]

F. Wu, S. Hu and Y. Liu, Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system,, Journal of Mathematical Analysis and Applications, 364 (2010), 104.  doi: 10.1016/j.jmaa.2009.10.072.  Google Scholar

[49]

F. Wu and G. Yin, Environmental noise impact on regularity and extinction of population systems with infinite delay,, Journal of Mathematical Analysis and Applications, 396 (2012), 772.  doi: 10.1016/j.jmaa.2012.07.017.  Google Scholar

[50]

G. Yin and F. Xi, Stablity of regime-switching jump diffusions,, SIAM Journal on Control and Optimization, 48 (2010), 4525.  doi: 10.1137/080738301.  Google Scholar

[51]

G. Yin and C. Zhu, Hybrid Switching Diffusions: Properties and Applications,, Springer, (2010).  doi: 10.1007/978-1-4419-1105-6.  Google Scholar

[52]

G. Yin, G. Zhao and F. Wu, Regularization and stabilization of randomly switching dynamic systems,, SIAM Journal on Applied Mathematics, 72 (2012), 1361.  doi: 10.1137/110851171.  Google Scholar

[53]

C. Zhu and G. Yin, On hybrid competitive Lotka-Volterra ecosystems,, Nonlinear Analysis: Theory, 71 (2009).  doi: 10.1016/j.na.2009.01.166.  Google Scholar

[54]

C. Zhu and G. Yin, On competitive Lotka-Volterra model in random environments,, Journal of Mathematical Analysis and Applications, 357 (2009), 154.  doi: 10.1016/j.jmaa.2009.03.066.  Google Scholar

[55]

X. Zong, F. Wu, G. Yin and Z. Jin, Almost sure and $p$th-moment stability and stabilization of regime-switching jump diffusion systems,, SIAM Journal on Control and Optimization, 52 (2014), 2595.  doi: 10.1137/14095251X.  Google Scholar

show all references

References:
[1]

W. J. Anderson, Continuous-Time Markov Chains,, Springer-Verlag, (1991).  doi: 10.1007/978-1-4612-3038-0.  Google Scholar

[2]

D. Applebaum, Levy Processes and Stochastic Calculus,, $2^{nd}$ Edition, (2009).  doi: 10.1017/CBO9780511809781.  Google Scholar

[3]

D. Applebaum and M. Siakalli, Asymptotic stability properties of stochastic differential equations driven by Lévy noise,, Journal of Applied Probability, 46 (2009), 1116.   Google Scholar

[4]

A. Bahar and X. Mao, Stochastic delay Lotka-Volterra model,, Journal of Mathematical Analysis and Applications, 292 (2004), 364.   Google Scholar

[5]

A. Bahar and X. Mao, Stochastic delay population dynamcis,, International Journal of pure and applied mathematics, 11 (2004), 377.   Google Scholar

[6]

J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps,, Nonlinear Analysis: Theory, 74 (2011), 6601.  doi: 10.1016/j.na.2011.06.043.  Google Scholar

[7]

J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise,, Journal of Mathematical Analysis and Applications, 391 (2012), 363.  doi: 10.1016/j.jmaa.2012.02.043.  Google Scholar

[8]

N. H. Dang, N. H. Du and G. Yin, Existence of stationary distributions for Kolmogorov systems of competitive type under telegraph noise,, Journal of Differential Equations, 257 (2014), 2078.  doi: 10.1016/j.jde.2014.05.029.  Google Scholar

[9]

A. Dembo and O. Zeitouni, Large Deviation Techniques and Applications,, $2^{nd}$, (1998).  doi: 10.1007/978-1-4612-5320-4.  Google Scholar

[10]

J. D. Deuschel and D. W. Stroock, Large Deviations,, Academic Press, (1989).   Google Scholar

[11]

M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, I,, Communications on Pure and Applied Mathematics, 28 (1975), 1.   Google Scholar

[12]

M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, II,, Communications on Pure and Applied Mathematics, 28 (1975), 279.   Google Scholar

[13]

M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, III,, Communications on Pure and Applied Mathematics, 29 (1976), 389.  doi: 10.1002/cpa.3160290405.  Google Scholar

[14]

M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, IV,, Communications on Pure and Applied Mathematics, 36 (1983), 183.  doi: 10.1002/cpa.3160360204.  Google Scholar

[15]

N. H. Du and N. H. Dang, Dynamics of Kolmogorov systems of competitive type under the telegraph noise,, Journal of Differential Equations, 250 (2011), 386.  doi: 10.1016/j.jde.2010.08.023.  Google Scholar

[16]

N. H. Du, D. H. Nguyen and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models,, to appear in Journal of Applied Probability., ().  doi: 10.1017/jpr.2015.18.  Google Scholar

[17]

T. Faria and J. J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks,, Journal of Differential Equations, 244 (2008), 1049.  doi: 10.1016/j.jde.2007.12.005.  Google Scholar

[18]

B. M. Gary, A functional equation characterizing monomial functions used in permanence theory for ecological differential equation,, Universitatis Iagellonicae acta mathematica, 42 (2004), 69.   Google Scholar

[19]

T. C. Gard, Persistence in stochastic food web models,, Bulletin of Mathematical Biology, 46 (1984), 357.  doi: 10.1007/BF02462011.  Google Scholar

[20]

T. C. Gard, Stability for multispecies population models in random environments,, Nonlinear Analysis, 10 (1986), 1411.  doi: 10.1016/0362-546X(86)90111-2.  Google Scholar

[21]

T. C. Gard, Introduction to Stochastic Differential Equations,, Dekker, (1988).   Google Scholar

[22]

K. Gopalsamy, Global asymptotic stability in a periodic Lotka-Volterra system,, The Journal of the Australian Mathematical Society. Series B, 27 (1985), 66.  doi: 10.1017/S0334270000004768.  Google Scholar

[23]

X. Han, Z. Teng and D. Xiao, Persistence and average persistence of a nonautonomous Kolmogorov system,, Chaos Solitons Fractals, 30 (2006), 748.  doi: 10.1016/j.chaos.2006.04.026.  Google Scholar

[24]

O. Kallenberg, Foundations of Modern Probability,, $2^{nd}$ Edition, (2002).   Google Scholar

[25]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Academic press, (1993).   Google Scholar

[26]

Y. Li and Y. Kuang, Periodic solutions of periodic delay Lotka-Volterra equations and systems,, Journal of Mathematical Analysis and Applications, 255 (2001), 260.  doi: 10.1006/jmaa.2000.7248.  Google Scholar

[27]

M. Liu and K. Wang, Stochastic Lotka-Volterra systems with Lévy noise,, Journal of Mathematical Analysis and Applications, 410 (2014), 750.  doi: 10.1016/j.jmaa.2013.07.078.  Google Scholar

[28]

Q. Luo and X. Mao, Stochastic population dynamics under regime switching,, Journal of Mathematical Analysis and applications, 334 (2007), 69.  doi: 10.1016/j.jmaa.2006.12.032.  Google Scholar

[29]

Q. Luo and X. Mao, Stochastic population dynamics under regime switching II,, Journal of Mathematical Analysis and Applications, 355 (2009), 577.  doi: 10.1016/j.jmaa.2009.02.010.  Google Scholar

[30]

E. Lungu and B. Øksendal, Optimal harvesting from a population in a stochastic crowded environment,, Mathematical Biosciences, 145 (1997), 47.  doi: 10.1016/S0025-5564(97)00029-1.  Google Scholar

[31]

E. Lungu and B. Øksendal, Optimal Harvesting from Interacting Populations in a Stochastic Environment,, Bernoulli, 7 (2001), 527.  doi: 10.2307/3318500.  Google Scholar

[32]

X. Mao, G. Marion and E. Renshaw, Environmental noise supresses explosion in population dynamics,, Stochastic Processes and their Applications, 97 (2002), 95.  doi: 10.1016/S0304-4149(01)00126-0.  Google Scholar

[33]

X. Mao, Delay population dynamics and environmental noise,, Stochastics and Dynamics, 5 (2005), 149.  doi: 10.1142/S021949370500133X.  Google Scholar

[34]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching,, Imperial College Press, (2006).  doi: 10.1142/p473.  Google Scholar

[35]

X. Mao, Stochastic Differential Equations and Applications,, $2^{nd}$ Edition, (2008).  doi: 10.1533/9780857099402.  Google Scholar

[36]

J. D. Murray, Mathematical Biology, I. an Introduction,, $3^{rd}$ Edition, (2002).   Google Scholar

[37]

H. D. Nguyen, N. H. Du and G. Yin, Existence of stationary distributions for Kolmogorov systems of competitive type under telegraph noise,, Journal of Differential Equations, 257 (2014), 2078.  doi: 10.1016/j.jde.2014.05.029.  Google Scholar

[38]

S. Pang, F. Deng and X. Mao, Asymptotic properties of stochastic population dynamics,, Dynamics of Continuous Discrete and Impulsive Systems Series A, 15 (2008), 603.   Google Scholar

[39]

P. E. Protter, Stochastic Integration and Differential Equations,, $2^{nd}$ Edition, (2004).   Google Scholar

[40]

M. Slatkin, The dynamics of a population in a Markovian environment,, Ecology, 59 (1978), 249.  doi: 10.2307/1936370.  Google Scholar

[41]

Y. Takeuchi, Global Dynamical Properties of Lotka-Volterra Systems,, World Scientific, (1996).  doi: 10.1142/9789812830548.  Google Scholar

[42]

Y. Takeuchi, N. H. Du, N. T. Hieu and K. Sato, Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment,, Journal of Mathematical Analysis and applications, 323 (2006), 938.  doi: 10.1016/j.jmaa.2005.11.009.  Google Scholar

[43]

B. Tang and Y. Kuang, Permanence in Kolmogorov-type systems of nonautonomous functional differential equations,, Journal of Mathematical Analysis and Applications, 197 (1996), 427.  doi: 10.1006/jmaa.1996.0030.  Google Scholar

[44]

Z. Teng, The almost periodic Kolmogorov competitive sysems,, Nonlinear Analysis, 42 (2000), 1221.  doi: 10.1016/S0362-546X(99)00149-2.  Google Scholar

[45]

F. Wu and S. Hu, Stochastic functional Kolmogorov-type population dynamics,, Journal of Mathematical analysis and applications, 347 (2008), 534.  doi: 10.1016/j.jmaa.2008.06.038.  Google Scholar

[46]

F. Wu and S. Hu, Suppression and stabilisation of noise,, International Journal of Control, 82 (2009), 2150.  doi: 10.1080/00207170902968108.  Google Scholar

[47]

F. Wu and Y. Xu, Stochastic Lotka-Volterra population dynamics with infinite delay,, SIAM Journal on Applied Mathematics, 70 (2009), 641.  doi: 10.1137/080719194.  Google Scholar

[48]

F. Wu, S. Hu and Y. Liu, Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system,, Journal of Mathematical Analysis and Applications, 364 (2010), 104.  doi: 10.1016/j.jmaa.2009.10.072.  Google Scholar

[49]

F. Wu and G. Yin, Environmental noise impact on regularity and extinction of population systems with infinite delay,, Journal of Mathematical Analysis and Applications, 396 (2012), 772.  doi: 10.1016/j.jmaa.2012.07.017.  Google Scholar

[50]

G. Yin and F. Xi, Stablity of regime-switching jump diffusions,, SIAM Journal on Control and Optimization, 48 (2010), 4525.  doi: 10.1137/080738301.  Google Scholar

[51]

G. Yin and C. Zhu, Hybrid Switching Diffusions: Properties and Applications,, Springer, (2010).  doi: 10.1007/978-1-4419-1105-6.  Google Scholar

[52]

G. Yin, G. Zhao and F. Wu, Regularization and stabilization of randomly switching dynamic systems,, SIAM Journal on Applied Mathematics, 72 (2012), 1361.  doi: 10.1137/110851171.  Google Scholar

[53]

C. Zhu and G. Yin, On hybrid competitive Lotka-Volterra ecosystems,, Nonlinear Analysis: Theory, 71 (2009).  doi: 10.1016/j.na.2009.01.166.  Google Scholar

[54]

C. Zhu and G. Yin, On competitive Lotka-Volterra model in random environments,, Journal of Mathematical Analysis and Applications, 357 (2009), 154.  doi: 10.1016/j.jmaa.2009.03.066.  Google Scholar

[55]

X. Zong, F. Wu, G. Yin and Z. Jin, Almost sure and $p$th-moment stability and stabilization of regime-switching jump diffusion systems,, SIAM Journal on Control and Optimization, 52 (2014), 2595.  doi: 10.1137/14095251X.  Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[3]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[4]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[5]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[6]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[7]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[8]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[11]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[14]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[15]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[16]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[17]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[20]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (99)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]