September  2016, 21(7): 2321-2336. doi: 10.3934/dcdsb.2016049

Strong Allee effect in a stochastic logistic model with mate limitation and stochastic immigration

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China

Received  February 2015 Revised  November 2015 Published  August 2016

We propose a stochastic logistic model with mate limitation and stochastic immigration. Incorporating stochastic immigration into a continuous time Markov chain model, we derive and analyze the associated master equation. By a standard result, there exists a unique globally stable positive stationary distribution. We show that such stationary distribution admits a bimodal profile which implies that a strong Allee effect exists in the stochastic model. Such strong Allee effect disappears and threshold phenomenon emerges as the total population size goes to infinity. Stochasticity vanishes and the model becomes deterministic as the total population size goes to infinity. This implies that there is only one possible fate (either to die out or survive) for a species constrained to a specific community and whether population eventually goes extinct or persists does not depend on initial population density but on a critical inherent constant determined by birth, death and mate limitation. Such a conclusion interprets differently from the classical ordinary differential equation model and thus a paradox on strong Allee effect occurs. Such paradox illustrates the diffusion theory's dilemma.
Citation: Chuang Xu. Strong Allee effect in a stochastic logistic model with mate limitation and stochastic immigration. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2321-2336. doi: 10.3934/dcdsb.2016049
References:
[1]

A. S. Ackleh, L. J. S. Allen and J. Carter, Establishing a beachhead: A stochastic population model with an Allee effect applied to species invasion,, Theor. Popul. Biol., 71 (2007), 290.  doi: 10.1016/j.tpb.2006.12.006.  Google Scholar

[2]

W. C. Allee, Animal Aggregations,, Univ. of Chicago Press, (1931).  doi: 10.1086/394281.  Google Scholar

[3]

W. C. Allee, The Social Life of Animals,, W. W. Norton & Company Inc. Publishers, (1938).   Google Scholar

[4]

P. Amarasekare, Allee effects in metapopulation dynamics,, Am. Nat., 152 (1998), 298.  doi: 10.1086/286169.  Google Scholar

[5]

H. G. Andrewartha and L. C. Birch, The Distribution and Abundance of Animals,, Univ. of Chicago Press, (1954).   Google Scholar

[6]

B. P. Beirne, Biological control attempts by introductions against pest insects in the field in Canada,, Canad. Ent., 107 (1975), 225.  doi: 10.4039/Ent107225-3.  Google Scholar

[7]

F. Brauer, Harvesting strategies for population systems,, Rocky Mt. J. Math., 9 (1979), 19.  doi: 10.1216/RMJ-1979-9-1-19.  Google Scholar

[8]

J. R. Chazottes, P. Collet and S. Méléard, Sharp asymptotics for the quasi-stationary distribution of birth-and-death processes,, Probab. Theory Rel., 164 (2016), 285.  doi: 10.1007/s00440-014-0612-6.  Google Scholar

[9]

F. Courchamp, J. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation,, Oxford Univ. Press, (2008).  doi: 10.1093/acprof:oso/9780198570301.001.0001.  Google Scholar

[10]

F. Courchamp, B. Grenfell and T. H. Clutton-Brock, Population dynamics of obligate cooperators,, Proc. R. Soc. London Ser. B, 266 (1999), 557.  doi: 10.1098/rspb.1999.0672.  Google Scholar

[11]

B. Dennis, Allee effects: Population growth, critical density, and chance of extinction,, Nat. Resour. Model., 3 (1989), 381.   Google Scholar

[12]

B. Dennis, Allee effects in stochastic populations,, Oikos, 96 (2002), 389.  doi: 10.1034/j.1600-0706.2002.960301.x.  Google Scholar

[13]

J. M. Drake and A. M. Kramer, Allee effects,, Nat. Edu. Knowl., 3 (2011).   Google Scholar

[14]

R. Frankham, Relationship of genetic variation to population size in wildlife-a review,, Conserv. Biol., 10 (1996), 1500.   Google Scholar

[15]

D. T. Gillespie, A rigorous derivation of the chemical master equation,, Physica A, 188 (1992), 404.  doi: 10.1016/0378-4371(92)90283-V.  Google Scholar

[16]

N. S. Goel and N. Richter-Dyn, Stochastic Models in Biology,, Academic Press, (1974).   Google Scholar

[17]

C. Greene and J. A. Stamps, Habitat selection at low population densities,, Ecol., 82 (2001), 2091.   Google Scholar

[18]

B. Griffith, J. M. Scott, J. W. Carpenter and C. Reed, Translocation as a species conservation tool: Status and strategy,, Science, 245 (1989), 477.  doi: 10.1126/science.245.4917.477.  Google Scholar

[19]

M. Gyllenberg, J. Hemminki and T. Tammaru, Allee effects can both conserve and create spatial heterogeneity in population densities,, Theor. Popul. Biol., 56 (1999), 231.  doi: 10.1006/tpbi.1999.1430.  Google Scholar

[20]

J. B. S. Haldane, Animal populations and their regulation,, New Biol., 15 (1953), 9.   Google Scholar

[21]

G. Huberman, Qualitative behavior of a fishery system,, Math. Biosci., 42 (1978), 1.  doi: 10.1016/0025-5564(78)90002-0.  Google Scholar

[22]

Y. Kang and N. Lanchier, Expansion or extinction: Deterministic and stochastic two-patch models with Allee effects,, J. Math. Biol., 62 (2011), 925.  doi: 10.1007/s00285-010-0359-3.  Google Scholar

[23]

D. G. Kendall, Deterministic and stochastic epidemics in closed populations,, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability (ed. J. Neyman), 4 (1956), 149.   Google Scholar

[24]

A. M. Kramer, B. Dennis, A. M. Liebhold and J. M. Drake, The evidence for Allee effects,, Popul. Ecol., 51 (2009), 341.  doi: 10.1007/s10144-009-0152-6.  Google Scholar

[25]

R. Lande, Demographic stochasticity and Allee effect on a scale with isotropic noise,, Oikos, 83 (1998), 353.   Google Scholar

[26]

M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms,, Theor. Popul. Biol., 43 (1993), 141.  doi: 10.1006/tpbi.1993.1007.  Google Scholar

[27]

D. Ludwig, D. D. Jones and C. S. Holling, Qualitative analysis of insect outbreak systems: The spruce budworm and forest,, J. Anim. Ecol., 47 (1978), 315.  doi: 10.2307/3939.  Google Scholar

[28]

M. A. McCarthy, The Allee effect, finding mates and theoretical models,, Ecol. Model., 103 (1997), 99.  doi: 10.1016/S0304-3800(97)00104-X.  Google Scholar

[29]

R. M. May, Thresholds and breakpoints in ecosystems with a multiplicity of stable states,, Nature, 269 (1977), 471.  doi: 10.1038/269471a0.  Google Scholar

[30]

I. Nåsell, Extinction and quasi-stationarity in the Verhulst logistic model,, J. Theor. Biol., 211 (2001), 11.   Google Scholar

[31]

R. M. Nisbet and W. S. C. Gurney, Modelling Fluctuating Populations,, John Wiley & Sons, (1982).   Google Scholar

[32]

O. Ovaskainen and B. Meerson, Stochastic models of population extinction,, Trends Ecol. Evol., 25 (2010), 643.  doi: 10.1016/j.tree.2010.07.009.  Google Scholar

[33]

J. R. Philip, Sociality and sparse populations,, Ecol., 38 (1957), 107.  doi: 10.2307/1932132.  Google Scholar

[34]

H. Qian, Nonlinear stochastic dynamics of mesoscopic homogeneous biochemical reaction systems-an analytical theory,, Nonlinearity, 24 (2011).  doi: 10.1088/0951-7715/24/6/R01.  Google Scholar

[35]

I. Scheuring, Allee effect and the dynamical stability of populations,, J. Theor. Biol., 199 (1999), 407.  doi: 10.1006/jtbi.1999.0966.  Google Scholar

[36]

S. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models,, Theor. Popul. Biol., 64 (2003), 201.  doi: 10.1016/S0040-5809(03)00072-8.  Google Scholar

[37]

P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect?,, Oikos, 87 (1999), 185.  doi: 10.2307/3547011.  Google Scholar

[38]

C. M. Taylor and A. Hastings, Allee effects in biological invasions,, Ecol. Lett., 8 (2005), 895.  doi: 10.1111/j.1461-0248.2005.00787.x.  Google Scholar

[39]

N. G. van Kampen, Stochastic Processes in Physics and Chemistry,, $3^{rd}$ edition, (1981).  doi: 10.1063/1.2915501.  Google Scholar

[40]

A. W. van der Vaart, Asymptotic Statistics,, Cambridge Univ. Press, (1998).  doi: 10.1017/CBO9780511802256.  Google Scholar

[41]

R. R. Veit and M. A. Lewis, Dispersal, population growth, and the Allee effect: Dynamics of the house finch invasion of eastern North America,, Am. Nat., 148 (1996), 255.  doi: 10.1086/285924.  Google Scholar

[42]

M. Vellela and H. Qian, A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox,, Bull. Math. Biol., 69 (2007), 1727.  doi: 10.1007/s11538-006-9188-3.  Google Scholar

[43]

D. B. West, Introduction to Graph Theory,, Prentice Hall, (1996).   Google Scholar

[44]

G. H. Weiss and M. Dishon, On the asymptotic behavior of the stochastic and deterministic models of an epidemic,, Math. Biosci., 11 (1971), 261.  doi: 10.1016/0025-5564(71)90087-3.  Google Scholar

[45]

H. Wells, E. G. Strauss, M. A. Rutter and P. H. Wells, Mate location, population growth, and species extinction,, Biol. Conserv., 86 (1998), 317.  doi: 10.1016/S0006-3207(98)00032-9.  Google Scholar

[46]

S. R. Zhou, C. Z. Liu and G. Wang, The competitive dynamics of metapopulation subject to the Allee-like effect,, Theor. Popul. Biol., 65 (2004), 29.  doi: 10.1016/j.tpb.2003.08.002.  Google Scholar

show all references

References:
[1]

A. S. Ackleh, L. J. S. Allen and J. Carter, Establishing a beachhead: A stochastic population model with an Allee effect applied to species invasion,, Theor. Popul. Biol., 71 (2007), 290.  doi: 10.1016/j.tpb.2006.12.006.  Google Scholar

[2]

W. C. Allee, Animal Aggregations,, Univ. of Chicago Press, (1931).  doi: 10.1086/394281.  Google Scholar

[3]

W. C. Allee, The Social Life of Animals,, W. W. Norton & Company Inc. Publishers, (1938).   Google Scholar

[4]

P. Amarasekare, Allee effects in metapopulation dynamics,, Am. Nat., 152 (1998), 298.  doi: 10.1086/286169.  Google Scholar

[5]

H. G. Andrewartha and L. C. Birch, The Distribution and Abundance of Animals,, Univ. of Chicago Press, (1954).   Google Scholar

[6]

B. P. Beirne, Biological control attempts by introductions against pest insects in the field in Canada,, Canad. Ent., 107 (1975), 225.  doi: 10.4039/Ent107225-3.  Google Scholar

[7]

F. Brauer, Harvesting strategies for population systems,, Rocky Mt. J. Math., 9 (1979), 19.  doi: 10.1216/RMJ-1979-9-1-19.  Google Scholar

[8]

J. R. Chazottes, P. Collet and S. Méléard, Sharp asymptotics for the quasi-stationary distribution of birth-and-death processes,, Probab. Theory Rel., 164 (2016), 285.  doi: 10.1007/s00440-014-0612-6.  Google Scholar

[9]

F. Courchamp, J. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation,, Oxford Univ. Press, (2008).  doi: 10.1093/acprof:oso/9780198570301.001.0001.  Google Scholar

[10]

F. Courchamp, B. Grenfell and T. H. Clutton-Brock, Population dynamics of obligate cooperators,, Proc. R. Soc. London Ser. B, 266 (1999), 557.  doi: 10.1098/rspb.1999.0672.  Google Scholar

[11]

B. Dennis, Allee effects: Population growth, critical density, and chance of extinction,, Nat. Resour. Model., 3 (1989), 381.   Google Scholar

[12]

B. Dennis, Allee effects in stochastic populations,, Oikos, 96 (2002), 389.  doi: 10.1034/j.1600-0706.2002.960301.x.  Google Scholar

[13]

J. M. Drake and A. M. Kramer, Allee effects,, Nat. Edu. Knowl., 3 (2011).   Google Scholar

[14]

R. Frankham, Relationship of genetic variation to population size in wildlife-a review,, Conserv. Biol., 10 (1996), 1500.   Google Scholar

[15]

D. T. Gillespie, A rigorous derivation of the chemical master equation,, Physica A, 188 (1992), 404.  doi: 10.1016/0378-4371(92)90283-V.  Google Scholar

[16]

N. S. Goel and N. Richter-Dyn, Stochastic Models in Biology,, Academic Press, (1974).   Google Scholar

[17]

C. Greene and J. A. Stamps, Habitat selection at low population densities,, Ecol., 82 (2001), 2091.   Google Scholar

[18]

B. Griffith, J. M. Scott, J. W. Carpenter and C. Reed, Translocation as a species conservation tool: Status and strategy,, Science, 245 (1989), 477.  doi: 10.1126/science.245.4917.477.  Google Scholar

[19]

M. Gyllenberg, J. Hemminki and T. Tammaru, Allee effects can both conserve and create spatial heterogeneity in population densities,, Theor. Popul. Biol., 56 (1999), 231.  doi: 10.1006/tpbi.1999.1430.  Google Scholar

[20]

J. B. S. Haldane, Animal populations and their regulation,, New Biol., 15 (1953), 9.   Google Scholar

[21]

G. Huberman, Qualitative behavior of a fishery system,, Math. Biosci., 42 (1978), 1.  doi: 10.1016/0025-5564(78)90002-0.  Google Scholar

[22]

Y. Kang and N. Lanchier, Expansion or extinction: Deterministic and stochastic two-patch models with Allee effects,, J. Math. Biol., 62 (2011), 925.  doi: 10.1007/s00285-010-0359-3.  Google Scholar

[23]

D. G. Kendall, Deterministic and stochastic epidemics in closed populations,, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability (ed. J. Neyman), 4 (1956), 149.   Google Scholar

[24]

A. M. Kramer, B. Dennis, A. M. Liebhold and J. M. Drake, The evidence for Allee effects,, Popul. Ecol., 51 (2009), 341.  doi: 10.1007/s10144-009-0152-6.  Google Scholar

[25]

R. Lande, Demographic stochasticity and Allee effect on a scale with isotropic noise,, Oikos, 83 (1998), 353.   Google Scholar

[26]

M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms,, Theor. Popul. Biol., 43 (1993), 141.  doi: 10.1006/tpbi.1993.1007.  Google Scholar

[27]

D. Ludwig, D. D. Jones and C. S. Holling, Qualitative analysis of insect outbreak systems: The spruce budworm and forest,, J. Anim. Ecol., 47 (1978), 315.  doi: 10.2307/3939.  Google Scholar

[28]

M. A. McCarthy, The Allee effect, finding mates and theoretical models,, Ecol. Model., 103 (1997), 99.  doi: 10.1016/S0304-3800(97)00104-X.  Google Scholar

[29]

R. M. May, Thresholds and breakpoints in ecosystems with a multiplicity of stable states,, Nature, 269 (1977), 471.  doi: 10.1038/269471a0.  Google Scholar

[30]

I. Nåsell, Extinction and quasi-stationarity in the Verhulst logistic model,, J. Theor. Biol., 211 (2001), 11.   Google Scholar

[31]

R. M. Nisbet and W. S. C. Gurney, Modelling Fluctuating Populations,, John Wiley & Sons, (1982).   Google Scholar

[32]

O. Ovaskainen and B. Meerson, Stochastic models of population extinction,, Trends Ecol. Evol., 25 (2010), 643.  doi: 10.1016/j.tree.2010.07.009.  Google Scholar

[33]

J. R. Philip, Sociality and sparse populations,, Ecol., 38 (1957), 107.  doi: 10.2307/1932132.  Google Scholar

[34]

H. Qian, Nonlinear stochastic dynamics of mesoscopic homogeneous biochemical reaction systems-an analytical theory,, Nonlinearity, 24 (2011).  doi: 10.1088/0951-7715/24/6/R01.  Google Scholar

[35]

I. Scheuring, Allee effect and the dynamical stability of populations,, J. Theor. Biol., 199 (1999), 407.  doi: 10.1006/jtbi.1999.0966.  Google Scholar

[36]

S. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models,, Theor. Popul. Biol., 64 (2003), 201.  doi: 10.1016/S0040-5809(03)00072-8.  Google Scholar

[37]

P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect?,, Oikos, 87 (1999), 185.  doi: 10.2307/3547011.  Google Scholar

[38]

C. M. Taylor and A. Hastings, Allee effects in biological invasions,, Ecol. Lett., 8 (2005), 895.  doi: 10.1111/j.1461-0248.2005.00787.x.  Google Scholar

[39]

N. G. van Kampen, Stochastic Processes in Physics and Chemistry,, $3^{rd}$ edition, (1981).  doi: 10.1063/1.2915501.  Google Scholar

[40]

A. W. van der Vaart, Asymptotic Statistics,, Cambridge Univ. Press, (1998).  doi: 10.1017/CBO9780511802256.  Google Scholar

[41]

R. R. Veit and M. A. Lewis, Dispersal, population growth, and the Allee effect: Dynamics of the house finch invasion of eastern North America,, Am. Nat., 148 (1996), 255.  doi: 10.1086/285924.  Google Scholar

[42]

M. Vellela and H. Qian, A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox,, Bull. Math. Biol., 69 (2007), 1727.  doi: 10.1007/s11538-006-9188-3.  Google Scholar

[43]

D. B. West, Introduction to Graph Theory,, Prentice Hall, (1996).   Google Scholar

[44]

G. H. Weiss and M. Dishon, On the asymptotic behavior of the stochastic and deterministic models of an epidemic,, Math. Biosci., 11 (1971), 261.  doi: 10.1016/0025-5564(71)90087-3.  Google Scholar

[45]

H. Wells, E. G. Strauss, M. A. Rutter and P. H. Wells, Mate location, population growth, and species extinction,, Biol. Conserv., 86 (1998), 317.  doi: 10.1016/S0006-3207(98)00032-9.  Google Scholar

[46]

S. R. Zhou, C. Z. Liu and G. Wang, The competitive dynamics of metapopulation subject to the Allee-like effect,, Theor. Popul. Biol., 65 (2004), 29.  doi: 10.1016/j.tpb.2003.08.002.  Google Scholar

[1]

Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643

[2]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[3]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[4]

Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060

[5]

Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172

[6]

Yanan Zhao, Yuguo Lin, Daqing Jiang, Xuerong Mao, Yong Li. Stationary distribution of stochastic SIRS epidemic model with standard incidence. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2363-2378. doi: 10.3934/dcdsb.2016051

[7]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[8]

Dianmo Li, Zhen Zhang, Zufei Ma, Baoyu Xie, Rui Wang. Allee effect and a catastrophe model of population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 629-634. doi: 10.3934/dcdsb.2004.4.629

[9]

Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124

[10]

Na Min, Mingxin Wang. Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1721-1737. doi: 10.3934/dcdsb.2018073

[11]

Yujing Gao, Bingtuan Li. Dynamics of a ratio-dependent predator-prey system with a strong Allee effect. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2283-2313. doi: 10.3934/dcdsb.2013.18.2283

[12]

Yuying Liu, Yuxiao Guo, Junjie Wei. Dynamics in a diffusive predator-prey system with stage structure and strong allee effect. Communications on Pure & Applied Analysis, 2020, 19 (2) : 883-910. doi: 10.3934/cpaa.2020040

[13]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[14]

Fırat Evirgen, Sümeyra Uçar, Necati Özdemir, Zakia Hammouch. System response of an alcoholism model under the effect of immigration via non-singular kernel derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020145

[15]

Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135

[16]

J. Leonel Rocha, Abdel-Kaddous Taha, Danièle Fournier-Prunaret. Explosion birth and extinction: Double big bang bifurcations and Allee effect in Tsoularis-Wallace's growth models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3131-3163. doi: 10.3934/dcdsb.2015.20.3131

[17]

Kashi Behrstock, Michel Benaïm, Morris W. Hirsch. Smale strategies for network prisoner's dilemma games. Journal of Dynamics & Games, 2015, 2 (2) : 141-155. doi: 10.3934/jdg.2015.2.141

[18]

Sharon M. Cameron, Ariel Cintrón-Arias. Prisoner's Dilemma on real social networks: Revisited. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1381-1398. doi: 10.3934/mbe.2013.10.1381

[19]

Alexei Pokrovskii, Dmitrii Rachinskii. Effect of positive feedback on Devil's staircase input-output relationship. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1095-1112. doi: 10.3934/dcdss.2013.6.1095

[20]

Moitri Sen, Malay Banerjee, Yasuhiro Takeuchi. Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 883-904. doi: 10.3934/mbe.2018040

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]