-
Previous Article
Characteristic roots for two-lag linear delay differential equations
- DCDS-B Home
- This Issue
- Next Article
Stability estimates for Navier-Stokes equations and application to inverse problems
1. | Laboratoire LMA, UMR CNRS 5142, Université de Pau et des Pays de l’Adour, 64013 Pau Cedex |
2. | Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS IMT, F-31062 Toulouse Cedex 9, France, France |
References:
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, volume 140 of Pure and Applied Mathematics (Amsterdam),, Elsevier/Academic Press, (2003).
|
[2] |
G. Alessandrini, L. Del Piero and L. Rondi, Stable determination of corrosion by a single electrostatic boundary measurement,, Inverse Problems, 19 (2003), 973.
doi: 10.1088/0266-5611/19/4/312. |
[3] |
G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations,, Inverse Problems, 25 (2009).
doi: 10.1088/0266-5611/25/12/123004. |
[4] |
G. Alessandrini and E. Sincich, Detecting nonlinear corrosion by electrostatic measurements,, Appl. Anal., 85 (2006), 107.
doi: 10.1080/00036810500277702. |
[5] |
L. Baffico, C. Grandmont and B. Maury, Multiscale modeling of the respiratory tract,, Math. Models Methods Appl. Sci., 20 (2010), 59.
doi: 10.1142/S0218202510004155. |
[6] |
A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid,, Inverse Problems, 26 (2010).
doi: 10.1088/0266-5611/26/12/125015. |
[7] |
M. Bellassoued, J. Cheng and M. Choulli, Stability estimate for an inverse boundary coefficient problem in thermal imaging,, J. Math. Anal. Appl., 343 (2008), 328.
doi: 10.1016/j.jmaa.2008.01.066. |
[8] |
F. Ben Belgacem, Why is the cauchy problem severely ill-posed?,, Inverse Problems, 23 (2007), 823.
doi: 10.1088/0266-5611/23/2/020. |
[9] |
M. Boulakia, A.-C. Egloffe and C. Grandmont, Stability estimates for a Robin coefficient in the two-dimensional Stokes system,, Math. Control Relat. Fields, 3 (2013), 21.
doi: 10.3934/mcrf.2013.3.21. |
[10] |
M. Boulakia, A.-C. Egloffe and C. Grandmont, Stability estimates for the unique continuation property of the Stokes system and for an inverse boundary coefficient problem,, Inverse Problems, 29 (2013).
doi: 10.1088/0266-5611/29/11/115001. |
[11] |
L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the cauchy problem in the presence of noisy data,, Inverse Problems, 26 (2010).
doi: 10.1088/0266-5611/26/9/095016. |
[12] |
H. Cao, M. V. Klibanov and S. V. Pereverzev, A carleman estimate and the balancing principle in the quasi-reversibility method for solving the cauchy problem for the laplace equation,, Inverse Problems, 25 (2009).
doi: 10.1088/0266-5611/25/3/035005. |
[13] |
S. Chaabane, I. Fellah, M. Jaoua and J. Leblond, Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems,, Inverse Problems, 20 (2004), 47.
doi: 10.1088/0266-5611/20/1/003. |
[14] |
S. Chaabane and M. Jaoua, Identification of Robin coefficients by the means of boundary measurements,, Inverse Problems, 15 (1999), 1425.
doi: 10.1088/0266-5611/15/6/303. |
[15] |
J. Cheng, M. Choulli and J. Lin, Stable determination of a boundary coefficient in an elliptic equation,, Math. Models Methods Appl. Sci., 18 (2008), 107.
doi: 10.1142/S0218202508002620. |
[16] |
J. Dardé, Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems,, Inverse Probl. Imaging, 10 (2016), 379.
doi: 10.3934/ipi.2016005. |
[17] |
I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, Translated from the French. Studies in Mathematics and its Applications, (1976).
|
[18] |
C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes,, Comm. Partial Differential Equations, 21 (1996), 573.
doi: 10.1080/03605309608821198. |
[19] |
A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, volume 34 of Lecture Notes Series,, Seoul National University Research Institute of Mathematics Global Analysis Research Center, (1996).
|
[20] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics,, Pitman (Advanced Publishing Program), (1985).
|
[21] |
O. Y. Imanuvilov and J.-P. Puel, Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems,, Int. Math. Res. Not., 16 (2003), 883.
doi: 10.1155/S107379280321117X. |
[22] |
M. V. Klibanov, Carleman estimates for the regularization of ill-posed Cauchy problems,, Appl. Numer. Math., 94 (2015), 46.
doi: 10.1016/j.apnum.2015.02.003. |
[23] |
M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications,, Inverse and Ill-posed Problems Series. VSP, (2004).
doi: 10.1515/9783110915549. |
[24] |
R. Lattès and J.-L. Lions, The Method of Quasi-reversibility. Applications to Partial Differential Equations,, Modern Analytic and Computational Methods in Science and Mathematics. American Elsevier Publishing Co., (1969).
|
[25] |
J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations,, ESAIM Control Optim. Calc. Var., 18 (2012), 712.
doi: 10.1051/cocv/2011168. |
[26] |
C.-L. Lin, G. Uhlmann and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system,, Discrete Contin. Dyn. Syst., 28 (2010), 1273.
doi: 10.3934/dcds.2010.28.1273. |
[27] |
A. Quarteroni and A. Veneziani, Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations,, Multiscale Model. Simul., 1 (2003), 173.
doi: 10.1137/S1540345902408482. |
[28] |
G. Savaré, Regularity and perturbation results for mixed second order elliptic problems,, Comm. Partial Differential Equations, 22 (1997), 869.
doi: 10.1080/03605309708821287. |
[29] |
E. Sincich, Lipschitz stability for the inverse Robin problem,, Inverse Problems, 23 (2007), 1311.
doi: 10.1088/0266-5611/23/3/027. |
[30] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, (2009).
doi: 10.1007/978-3-7643-8994-9. |
[31] |
I. E. Vignon-Clementel, C. A. Figueroa, K. E. Jansen and C. A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries,, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3776.
doi: 10.1016/j.cma.2005.04.014. |
show all references
References:
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, volume 140 of Pure and Applied Mathematics (Amsterdam),, Elsevier/Academic Press, (2003).
|
[2] |
G. Alessandrini, L. Del Piero and L. Rondi, Stable determination of corrosion by a single electrostatic boundary measurement,, Inverse Problems, 19 (2003), 973.
doi: 10.1088/0266-5611/19/4/312. |
[3] |
G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations,, Inverse Problems, 25 (2009).
doi: 10.1088/0266-5611/25/12/123004. |
[4] |
G. Alessandrini and E. Sincich, Detecting nonlinear corrosion by electrostatic measurements,, Appl. Anal., 85 (2006), 107.
doi: 10.1080/00036810500277702. |
[5] |
L. Baffico, C. Grandmont and B. Maury, Multiscale modeling of the respiratory tract,, Math. Models Methods Appl. Sci., 20 (2010), 59.
doi: 10.1142/S0218202510004155. |
[6] |
A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid,, Inverse Problems, 26 (2010).
doi: 10.1088/0266-5611/26/12/125015. |
[7] |
M. Bellassoued, J. Cheng and M. Choulli, Stability estimate for an inverse boundary coefficient problem in thermal imaging,, J. Math. Anal. Appl., 343 (2008), 328.
doi: 10.1016/j.jmaa.2008.01.066. |
[8] |
F. Ben Belgacem, Why is the cauchy problem severely ill-posed?,, Inverse Problems, 23 (2007), 823.
doi: 10.1088/0266-5611/23/2/020. |
[9] |
M. Boulakia, A.-C. Egloffe and C. Grandmont, Stability estimates for a Robin coefficient in the two-dimensional Stokes system,, Math. Control Relat. Fields, 3 (2013), 21.
doi: 10.3934/mcrf.2013.3.21. |
[10] |
M. Boulakia, A.-C. Egloffe and C. Grandmont, Stability estimates for the unique continuation property of the Stokes system and for an inverse boundary coefficient problem,, Inverse Problems, 29 (2013).
doi: 10.1088/0266-5611/29/11/115001. |
[11] |
L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the cauchy problem in the presence of noisy data,, Inverse Problems, 26 (2010).
doi: 10.1088/0266-5611/26/9/095016. |
[12] |
H. Cao, M. V. Klibanov and S. V. Pereverzev, A carleman estimate and the balancing principle in the quasi-reversibility method for solving the cauchy problem for the laplace equation,, Inverse Problems, 25 (2009).
doi: 10.1088/0266-5611/25/3/035005. |
[13] |
S. Chaabane, I. Fellah, M. Jaoua and J. Leblond, Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems,, Inverse Problems, 20 (2004), 47.
doi: 10.1088/0266-5611/20/1/003. |
[14] |
S. Chaabane and M. Jaoua, Identification of Robin coefficients by the means of boundary measurements,, Inverse Problems, 15 (1999), 1425.
doi: 10.1088/0266-5611/15/6/303. |
[15] |
J. Cheng, M. Choulli and J. Lin, Stable determination of a boundary coefficient in an elliptic equation,, Math. Models Methods Appl. Sci., 18 (2008), 107.
doi: 10.1142/S0218202508002620. |
[16] |
J. Dardé, Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems,, Inverse Probl. Imaging, 10 (2016), 379.
doi: 10.3934/ipi.2016005. |
[17] |
I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, Translated from the French. Studies in Mathematics and its Applications, (1976).
|
[18] |
C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes,, Comm. Partial Differential Equations, 21 (1996), 573.
doi: 10.1080/03605309608821198. |
[19] |
A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, volume 34 of Lecture Notes Series,, Seoul National University Research Institute of Mathematics Global Analysis Research Center, (1996).
|
[20] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics,, Pitman (Advanced Publishing Program), (1985).
|
[21] |
O. Y. Imanuvilov and J.-P. Puel, Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems,, Int. Math. Res. Not., 16 (2003), 883.
doi: 10.1155/S107379280321117X. |
[22] |
M. V. Klibanov, Carleman estimates for the regularization of ill-posed Cauchy problems,, Appl. Numer. Math., 94 (2015), 46.
doi: 10.1016/j.apnum.2015.02.003. |
[23] |
M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications,, Inverse and Ill-posed Problems Series. VSP, (2004).
doi: 10.1515/9783110915549. |
[24] |
R. Lattès and J.-L. Lions, The Method of Quasi-reversibility. Applications to Partial Differential Equations,, Modern Analytic and Computational Methods in Science and Mathematics. American Elsevier Publishing Co., (1969).
|
[25] |
J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations,, ESAIM Control Optim. Calc. Var., 18 (2012), 712.
doi: 10.1051/cocv/2011168. |
[26] |
C.-L. Lin, G. Uhlmann and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system,, Discrete Contin. Dyn. Syst., 28 (2010), 1273.
doi: 10.3934/dcds.2010.28.1273. |
[27] |
A. Quarteroni and A. Veneziani, Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations,, Multiscale Model. Simul., 1 (2003), 173.
doi: 10.1137/S1540345902408482. |
[28] |
G. Savaré, Regularity and perturbation results for mixed second order elliptic problems,, Comm. Partial Differential Equations, 22 (1997), 869.
doi: 10.1080/03605309708821287. |
[29] |
E. Sincich, Lipschitz stability for the inverse Robin problem,, Inverse Problems, 23 (2007), 1311.
doi: 10.1088/0266-5611/23/3/027. |
[30] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, (2009).
doi: 10.1007/978-3-7643-8994-9. |
[31] |
I. E. Vignon-Clementel, C. A. Figueroa, K. E. Jansen and C. A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries,, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3776.
doi: 10.1016/j.cma.2005.04.014. |
[1] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[2] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[3] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[4] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[5] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[6] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[7] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[8] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[9] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[10] |
Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 |
[11] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[12] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[13] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[14] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[15] |
Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 |
[16] |
Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171 |
[17] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[18] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[19] |
Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 |
[20] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]