October  2016, 21(8): 2491-2507. doi: 10.3934/dcdsb.2016057

Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary

1. 

College of Science, Civil Aviation University of China, Tianjin 300300, China

2. 

Department of Mathematics, Tianjin University, Tianjin 300072, China, China

Received  October 2015 Revised  April 2016 Published  September 2016

This paper considers the stabilization of a wave equation with interior input delay: $\mu_1u(x,t)+\mu_2u(x,t-\tau)$, where $u(x,t)$ is the control input. A new dynamic feedback control law is obtained to stabilize the closed-loop system exponentially for any time delay $\tau>0$ provided that $|\mu_1|\neq|\mu_2|$. Moreover, some sufficient conditions are given for discriminating the asymptotic stability and instability of the closed-loop system.
Citation: Yanni Guo, Genqi Xu, Yansha Guo. Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2491-2507. doi: 10.3934/dcdsb.2016057
References:
[1]

K. Ammaria, S. Nicaise and C. Pignotti, Feedback boundary stabilization of wave equations with interior delay, Systems and Control Letters, 59 (2010), 623-628. doi: 10.1016/j.sysconle.2010.07.007.

[2]

T. A. Apalara, Asymptotic behavior of weakly dissipative Timoshenko system with internal constant delay feedbacks, Applicable Analysis, 95 (2016), 187-202. doi: 10.1080/00036811.2014.1000314.

[3]

E. M. A. Benhassi, K. Ammari, S. Boulite and L. Maniar, Feedback stabilization of a class of evolution equations with delay, Journal of Evolution Equations, 9 (2009), 103-121. doi: 10.1007/s00028-009-0004-z.

[4]

R. Datko, Not all feedback stabilized huperbolic systems are robust with respect to small time delays in their feedbacks, SIAM Journal on Control and Optimimization, 26 (1988), 697-713. doi: 10.1137/0326040.

[5]

R. Datko, Two examples of ill-posedness with respect of time delays revised, IEEE Trans. Automatic Control, 42 (1997), 511-515. doi: 10.1109/9.566660.

[6]

N. Dunford and J. T. Schwartz, Linear Operators, Part Iii, Spectral Operators, Wiley-Interscience, New York, 1971.

[7]

P. Freitas and E. Zuazua, Stability results for the wave equation with indefinite damping, Journal of Differential Equations, 132 (1996), 338-352. doi: 10.1006/jdeq.1996.0183.

[8]

B. Z. Guo and Y. H. Luo, Controllability and stability of a second-order hyperbolic system with collocated sensor/ actuator, Systems and Control Letters, 46 (2002), 45-65. doi: 10.1016/S0167-6911(01)00201-8.

[9]

B. S. Houari and A. Soufyane, Stability result of the Timoshenko system with delay and boundary feedback, IMA Journal of Mathematical Control and Information, 29 (2012), 383-398. doi: 10.1093/imamci/dnr043.

[10]

Z. J. Han and G. Q. Xu, Output-based stabilization of Euler-Bernoulli beam with time delay in boundary control, IMA journal of Mathematical Control and Information, 31 (2014), 533-550. doi: 10.1093/imamci/dnt030.

[11]

X. F. Liu and G. Q. Xu, Exponential stabilization for Timoshenko beam with distributed delay in the boundary control, Abstract and Applied Analysis, (2013), 1-15.

[12]

Yu. I. Byubich and Vũ Quôc Phóng, Asymptotic stability of linear differential equations in Bnanach spaces, Studia Mathmatic, 88 (1988), 37-42.

[13]

Ö. Mörgul, On the stabilization and stability robustness against small delays of some damped wave equation, IEEE Trans. Automat. Control, 40 (1995), 1626-1630. doi: 10.1109/9.412634.

[14]

S. Nacaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM Journal on Control and Optimimization, 45 (2006), 1561-1585. doi: 10.1137/060648891.

[15]

S. Nacaise and J. Valein, Stabilization of the wave equations on 1-d networks with a delay term in the nodal feedbacks, Networks and Heterogrneous Media, 2 (2007), 425-479. doi: 10.3934/nhm.2007.2.425.

[16]

S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, Electronic Journal of Differential Equations, 41 (2011), 1-20.

[17]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[18]

Y. F. Shang and G. Q. Xu, Stabilization of Euler-Bernouli beam with input delay in the boundary control, System Control Letters, 61 (2012), 1069-1078. doi: 10.1016/j.sysconle.2012.07.012.

[19]

Y. F. Shang and G. Q. Xu, Dynamic feedback control and exponential stabilization of a compound system, Journal of Mathematical Analysis and Applications, 422 (2015), 858-879. doi: 10.1016/j.jmaa.2014.09.013.

[20]

M. Slemrod, A Note on complete controllability and stabilizability for linear control systems in Hilbert space, SIAM Journal of Control and Optimation, 12 (1974), 500-508. doi: 10.1137/0312038.

[21]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Verlag, Berlin, 2009. doi: 10.1007/978-3-7643-8994-9.

[22]

G. Q. Xu, S. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM, Control Optim. Calc. Var., 12 (2006), 770-785. doi: 10.1051/cocv:2006021.

[23]

G. Q. Xu and H. X. Wang, Stabilisation of Timoshenko beam system with delay in the boundary control, International Journal of Control, 86 (2013), 1165-1178. doi: 10.1080/00207179.2013.787494.

[24]

K. Y. Yang and C. Z. Yao, Stabilization of one-dimention schrödinger equation by boundary observation with time delay, Asian Journal of Control, 15 (2013), 1531-1537.

show all references

References:
[1]

K. Ammaria, S. Nicaise and C. Pignotti, Feedback boundary stabilization of wave equations with interior delay, Systems and Control Letters, 59 (2010), 623-628. doi: 10.1016/j.sysconle.2010.07.007.

[2]

T. A. Apalara, Asymptotic behavior of weakly dissipative Timoshenko system with internal constant delay feedbacks, Applicable Analysis, 95 (2016), 187-202. doi: 10.1080/00036811.2014.1000314.

[3]

E. M. A. Benhassi, K. Ammari, S. Boulite and L. Maniar, Feedback stabilization of a class of evolution equations with delay, Journal of Evolution Equations, 9 (2009), 103-121. doi: 10.1007/s00028-009-0004-z.

[4]

R. Datko, Not all feedback stabilized huperbolic systems are robust with respect to small time delays in their feedbacks, SIAM Journal on Control and Optimimization, 26 (1988), 697-713. doi: 10.1137/0326040.

[5]

R. Datko, Two examples of ill-posedness with respect of time delays revised, IEEE Trans. Automatic Control, 42 (1997), 511-515. doi: 10.1109/9.566660.

[6]

N. Dunford and J. T. Schwartz, Linear Operators, Part Iii, Spectral Operators, Wiley-Interscience, New York, 1971.

[7]

P. Freitas and E. Zuazua, Stability results for the wave equation with indefinite damping, Journal of Differential Equations, 132 (1996), 338-352. doi: 10.1006/jdeq.1996.0183.

[8]

B. Z. Guo and Y. H. Luo, Controllability and stability of a second-order hyperbolic system with collocated sensor/ actuator, Systems and Control Letters, 46 (2002), 45-65. doi: 10.1016/S0167-6911(01)00201-8.

[9]

B. S. Houari and A. Soufyane, Stability result of the Timoshenko system with delay and boundary feedback, IMA Journal of Mathematical Control and Information, 29 (2012), 383-398. doi: 10.1093/imamci/dnr043.

[10]

Z. J. Han and G. Q. Xu, Output-based stabilization of Euler-Bernoulli beam with time delay in boundary control, IMA journal of Mathematical Control and Information, 31 (2014), 533-550. doi: 10.1093/imamci/dnt030.

[11]

X. F. Liu and G. Q. Xu, Exponential stabilization for Timoshenko beam with distributed delay in the boundary control, Abstract and Applied Analysis, (2013), 1-15.

[12]

Yu. I. Byubich and Vũ Quôc Phóng, Asymptotic stability of linear differential equations in Bnanach spaces, Studia Mathmatic, 88 (1988), 37-42.

[13]

Ö. Mörgul, On the stabilization and stability robustness against small delays of some damped wave equation, IEEE Trans. Automat. Control, 40 (1995), 1626-1630. doi: 10.1109/9.412634.

[14]

S. Nacaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM Journal on Control and Optimimization, 45 (2006), 1561-1585. doi: 10.1137/060648891.

[15]

S. Nacaise and J. Valein, Stabilization of the wave equations on 1-d networks with a delay term in the nodal feedbacks, Networks and Heterogrneous Media, 2 (2007), 425-479. doi: 10.3934/nhm.2007.2.425.

[16]

S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, Electronic Journal of Differential Equations, 41 (2011), 1-20.

[17]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[18]

Y. F. Shang and G. Q. Xu, Stabilization of Euler-Bernouli beam with input delay in the boundary control, System Control Letters, 61 (2012), 1069-1078. doi: 10.1016/j.sysconle.2012.07.012.

[19]

Y. F. Shang and G. Q. Xu, Dynamic feedback control and exponential stabilization of a compound system, Journal of Mathematical Analysis and Applications, 422 (2015), 858-879. doi: 10.1016/j.jmaa.2014.09.013.

[20]

M. Slemrod, A Note on complete controllability and stabilizability for linear control systems in Hilbert space, SIAM Journal of Control and Optimation, 12 (1974), 500-508. doi: 10.1137/0312038.

[21]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Verlag, Berlin, 2009. doi: 10.1007/978-3-7643-8994-9.

[22]

G. Q. Xu, S. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM, Control Optim. Calc. Var., 12 (2006), 770-785. doi: 10.1051/cocv:2006021.

[23]

G. Q. Xu and H. X. Wang, Stabilisation of Timoshenko beam system with delay in the boundary control, International Journal of Control, 86 (2013), 1165-1178. doi: 10.1080/00207179.2013.787494.

[24]

K. Y. Yang and C. Z. Yao, Stabilization of one-dimention schrödinger equation by boundary observation with time delay, Asian Journal of Control, 15 (2013), 1531-1537.

[1]

Samuel Bernard, Jacques Bélair, Michael C Mackey. Sufficient conditions for stability of linear differential equations with distributed delay. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 233-256. doi: 10.3934/dcdsb.2001.1.233

[2]

Baruch Cahlon. Sufficient conditions for oscillations of higher order neutral delay differential equations. Conference Publications, 1998, 1998 (Special) : 124-137. doi: 10.3934/proc.1998.1998.124

[3]

Cristopher Hermosilla. Stratified discontinuous differential equations and sufficient conditions for robustness. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4415-4437. doi: 10.3934/dcds.2015.35.4415

[4]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[5]

Takeshi Taniguchi. Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1571-1585. doi: 10.3934/cpaa.2017075

[6]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

[7]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Global stabilization of the Navier-Stokes equations around an unstable equilibrium state with a boundary feedback controller. Evolution Equations and Control Theory, 2015, 4 (1) : 89-106. doi: 10.3934/eect.2015.4.89

[8]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evolution Equations and Control Theory, 2014, 3 (1) : 147-166. doi: 10.3934/eect.2014.3.147

[9]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[10]

RazIye Mert, A. Zafer. A necessary and sufficient condition for oscillation of second order sublinear delay dynamic equations. Conference Publications, 2011, 2011 (Special) : 1061-1067. doi: 10.3934/proc.2011.2011.1061

[11]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[12]

Zhiling Guo, Shugen Chai. Exponential stabilization of the problem of transmission of wave equation with linear dynamical feedback control. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022001

[13]

Xiaoyu Fu. Stabilization of hyperbolic equations with mixed boundary conditions. Mathematical Control and Related Fields, 2015, 5 (4) : 761-780. doi: 10.3934/mcrf.2015.5.761

[14]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[15]

Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1345-1358. doi: 10.3934/dcdss.2020367

[16]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[17]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[18]

Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101

[19]

Jehad O. Alzabut. A necessary and sufficient condition for the existence of periodic solutions of linear impulsive differential equations with distributed delay. Conference Publications, 2007, 2007 (Special) : 35-43. doi: 10.3934/proc.2007.2007.35

[20]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Hiroki Tanabe, Atsushi Yagi. Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 973-987. doi: 10.3934/dcds.2008.22.973

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (228)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]