\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Random walk's models for fractional diffusion equation

Abstract / Introduction Related Papers Cited by
  • Fractional diffusion equations are used for mass spreading in inhomogeneous media. They are applied to model anomalous diffusion, where a cloud of particles spreads in a different manner than the classical diffusion equation predicts. Thus, they involve fractional derivatives. Here we present a continuous variant of Grünwald-Letnikov's formula, which is useful to compute the flux of particles performing random walks, allowing for heavy-tailed jump distributions. In fact, we set a definition of fractional derivatives yielding the operators which enable us to retrieve the space fractional variant of Fick's law, for enhanced diffusion in disordered media, without passing through any partial differential equation for the space and time evolution of the concentration.
    Mathematics Subject Classification: Primary: 60J60, 45K05, 26A33; Secondary: 60G50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II. Second edition John Wiley and sons,Inc., New York-London-Sydney, 1971.

    [2]

    R. Gorenflo and F. Mainardi, Random Walk models for space-fractional diffusion processes, Fractional Calculus and Applied Analysis, 1 (1998), 167-191.

    [3]

    N. Heymans, Fractional calculus description of non-linear viscoelastic behaviour of polymers, in Non-linear Dynamics, 38 (2004), 221-231.doi: 10.1007/s11071-004-3757-5.

    [4]

    N. Krepysheva, Transport anormal de traceurs passifs en milieux poreux hétérogènes: équations fractionnaires, simulation numérique et conditions aux limites, Ph.D thesis, Université D'Avignon et des Pays de Vaucluse, 2005.

    [5]

    A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies 204, Ed. Jan van Mill, Amsterdam, 2006.

    [6]

    F. Mainardi, Fractional calculus: Some basic problems in countinum and statistical mechanics, in Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien and New York, 378 (1997), 291-348, arXiv:1201.0863.doi: 10.1007/978-3-7091-2664-6_7.

    [7]

    R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, in J. Phys. A, 37 (2004), 161-208.doi: 10.1088/0305-4470/37/31/R01.

    [8]

    M. C. Néel, A. Abdennadher and M. joelson, Fractional Fick's law: The direct way, in Journal of Physics A: Mathematical and Theoretical, 40 (2007), 8299-8314.

    [9]

    B. Rubin, Fractional Integrals and Potentials, Longman Green, Harlow, 1996.

    [10]

    S. G. Samko, Hypersingular integrals and differences of fractional order, in Trudy Mat. Inst. Steklov, 192 (1990), 164-182.

    [11]

    S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gorden and Breach, New York, 1993.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(286) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return