• Previous Article
    The global attractor of the 2d Boussinesq equations with fractional Laplacian in subcritical case
  • DCDS-B Home
  • This Issue
  • Next Article
    Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary
October  2016, 21(8): 2509-2530. doi: 10.3934/dcdsb.2016058

Random walk's models for fractional diffusion equation

1. 

Laboratoire d'Ingénierie Mathématique, Université de Carthage, Ecole Polytechnique de Tunisie, BP 743, 2078 La Marsa, Tunisia

2. 

Laboratoire d'Ingénierie Mathématique, Université de Carthage, Ecole Polytechnique de Tunisie-Institut National des Sciences Appliquées et de Technologie, Centre Urbain Nord, BP 676 Cedex 1080 Charguia Tunis, Tunisia

Received  April 2015 Revised  May 2016 Published  September 2016

Fractional diffusion equations are used for mass spreading in inhomogeneous media. They are applied to model anomalous diffusion, where a cloud of particles spreads in a different manner than the classical diffusion equation predicts. Thus, they involve fractional derivatives. Here we present a continuous variant of Grünwald-Letnikov's formula, which is useful to compute the flux of particles performing random walks, allowing for heavy-tailed jump distributions. In fact, we set a definition of fractional derivatives yielding the operators which enable us to retrieve the space fractional variant of Fick's law, for enhanced diffusion in disordered media, without passing through any partial differential equation for the space and time evolution of the concentration.
Citation: Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058
References:
[1]

W. Feller, An Introduction to Probability Theory and Its Applications,, Vol. II. Second edition John Wiley and sons, (1971).   Google Scholar

[2]

R. Gorenflo and F. Mainardi, Random Walk models for space-fractional diffusion processes,, Fractional Calculus and Applied Analysis, 1 (1998), 167.   Google Scholar

[3]

N. Heymans, Fractional calculus description of non-linear viscoelastic behaviour of polymers,, in Non-linear Dynamics, 38 (2004), 221.  doi: 10.1007/s11071-004-3757-5.  Google Scholar

[4]

N. Krepysheva, Transport anormal de traceurs passifs en milieux poreux hétérogènes: équations fractionnaires, simulation numérique et conditions aux limites,, Ph.D thesis, (2005).   Google Scholar

[5]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North-Holland Mathematical Studies 204, (2006).   Google Scholar

[6]

F. Mainardi, Fractional calculus: Some basic problems in countinum and statistical mechanics,, in Fractals and Fractional Calculus in Continuum Mechanics, 378 (1997), 291.  doi: 10.1007/978-3-7091-2664-6_7.  Google Scholar

[7]

R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics,, in J. Phys. A, 37 (2004), 161.  doi: 10.1088/0305-4470/37/31/R01.  Google Scholar

[8]

M. C. Néel, A. Abdennadher and M. joelson, Fractional Fick's law: The direct way,, in Journal of Physics A: Mathematical and Theoretical, 40 (2007), 8299.   Google Scholar

[9]

B. Rubin, Fractional Integrals and Potentials,, Longman Green, (1996).   Google Scholar

[10]

S. G. Samko, Hypersingular integrals and differences of fractional order,, in Trudy Mat. Inst. Steklov, 192 (1990), 164.   Google Scholar

[11]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives,, Gorden and Breach, (1993).   Google Scholar

show all references

References:
[1]

W. Feller, An Introduction to Probability Theory and Its Applications,, Vol. II. Second edition John Wiley and sons, (1971).   Google Scholar

[2]

R. Gorenflo and F. Mainardi, Random Walk models for space-fractional diffusion processes,, Fractional Calculus and Applied Analysis, 1 (1998), 167.   Google Scholar

[3]

N. Heymans, Fractional calculus description of non-linear viscoelastic behaviour of polymers,, in Non-linear Dynamics, 38 (2004), 221.  doi: 10.1007/s11071-004-3757-5.  Google Scholar

[4]

N. Krepysheva, Transport anormal de traceurs passifs en milieux poreux hétérogènes: équations fractionnaires, simulation numérique et conditions aux limites,, Ph.D thesis, (2005).   Google Scholar

[5]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North-Holland Mathematical Studies 204, (2006).   Google Scholar

[6]

F. Mainardi, Fractional calculus: Some basic problems in countinum and statistical mechanics,, in Fractals and Fractional Calculus in Continuum Mechanics, 378 (1997), 291.  doi: 10.1007/978-3-7091-2664-6_7.  Google Scholar

[7]

R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics,, in J. Phys. A, 37 (2004), 161.  doi: 10.1088/0305-4470/37/31/R01.  Google Scholar

[8]

M. C. Néel, A. Abdennadher and M. joelson, Fractional Fick's law: The direct way,, in Journal of Physics A: Mathematical and Theoretical, 40 (2007), 8299.   Google Scholar

[9]

B. Rubin, Fractional Integrals and Potentials,, Longman Green, (1996).   Google Scholar

[10]

S. G. Samko, Hypersingular integrals and differences of fractional order,, in Trudy Mat. Inst. Steklov, 192 (1990), 164.   Google Scholar

[11]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives,, Gorden and Breach, (1993).   Google Scholar

[1]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. II. Kinetic & Related Models, 2014, 7 (2) : 291-304. doi: 10.3934/krm.2014.7.291

[2]

Michael Taylor. Random walks, random flows, and enhanced diffusivity in advection-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1261-1287. doi: 10.3934/dcdsb.2012.17.1261

[3]

Min He. A class of integrodifferential equations and applications. Conference Publications, 2005, 2005 (Special) : 386-396. doi: 10.3934/proc.2005.2005.386

[4]

Maxim Sølund Kirsebom. Extreme value theory for random walks on homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4689-4717. doi: 10.3934/dcds.2014.34.4689

[5]

Colin Little. Deterministically driven random walks in a random environment on $\mathbb{Z}$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5555-5578. doi: 10.3934/dcds.2016044

[6]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039

[7]

Jacek Banasiak. Transport processes with coagulation and strong fragmentation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 445-472. doi: 10.3934/dcdsb.2012.17.445

[8]

Martin Frank, Weiran Sun. Fractional diffusion limits of non-classical transport equations. Kinetic & Related Models, 2018, 11 (6) : 1503-1526. doi: 10.3934/krm.2018059

[9]

Jean-Pierre Conze, Y. Guivarc'h. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4239-4269. doi: 10.3934/dcds.2013.33.4239

[10]

Christina Knox, Amir Moradifam. Electrical networks with prescribed current and applications to random walks on graphs. Inverse Problems & Imaging, 2019, 13 (2) : 353-375. doi: 10.3934/ipi.2019018

[11]

Stephan Didas, Joachim Weickert. Integrodifferential equations for continuous multiscale wavelet shrinkage. Inverse Problems & Imaging, 2007, 1 (1) : 47-62. doi: 10.3934/ipi.2007.1.47

[12]

Paola Loreti, Daniela Sforza. Inverse observability inequalities for integrodifferential equations in square domains. Evolution Equations & Control Theory, 2018, 7 (1) : 61-77. doi: 10.3934/eect.2018004

[13]

Fahd Jarad, Thabet Abdeljawad. Variational principles in the frame of certain generalized fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 695-708. doi: 10.3934/dcdss.2020038

[14]

Renhai Wang, Yangrong Li, Bixiang Wang. Random dynamics of fractional nonclassical diffusion equations driven by colored noise. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4091-4126. doi: 10.3934/dcds.2019165

[15]

Jorge Clarke, Christian Olivera, Ciprian Tudor. The transport equation and zero quadratic variation processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2991-3002. doi: 10.3934/dcdsb.2016083

[16]

Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 723-739. doi: 10.3934/dcdss.2020040

[17]

Jan Lorenz, Stefano Battiston. Systemic risk in a network fragility model analyzed with probability density evolution of persistent random walks. Networks & Heterogeneous Media, 2008, 3 (2) : 185-200. doi: 10.3934/nhm.2008.3.185

[18]

Kumiko Hattori, Noriaki Ogo, Takafumi Otsuka. A family of self-avoiding random walks interpolating the loop-erased random walk and a self-avoiding walk on the Sierpiński gasket. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 289-311. doi: 10.3934/dcdss.2017014

[19]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[20]

Zbigniew Gomolka, Boguslaw Twarog, Jacek Bartman. Improvement of image processing by using homogeneous neural networks with fractional derivatives theorem. Conference Publications, 2011, 2011 (Special) : 505-514. doi: 10.3934/proc.2011.2011.505

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]