• Previous Article
    The global attractor of the 2d Boussinesq equations with fractional Laplacian in subcritical case
  • DCDS-B Home
  • This Issue
  • Next Article
    Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary
October  2016, 21(8): 2509-2530. doi: 10.3934/dcdsb.2016058

Random walk's models for fractional diffusion equation

1. 

Laboratoire d'Ingénierie Mathématique, Université de Carthage, Ecole Polytechnique de Tunisie, BP 743, 2078 La Marsa, Tunisia

2. 

Laboratoire d'Ingénierie Mathématique, Université de Carthage, Ecole Polytechnique de Tunisie-Institut National des Sciences Appliquées et de Technologie, Centre Urbain Nord, BP 676 Cedex 1080 Charguia Tunis, Tunisia

Received  April 2015 Revised  May 2016 Published  September 2016

Fractional diffusion equations are used for mass spreading in inhomogeneous media. They are applied to model anomalous diffusion, where a cloud of particles spreads in a different manner than the classical diffusion equation predicts. Thus, they involve fractional derivatives. Here we present a continuous variant of Grünwald-Letnikov's formula, which is useful to compute the flux of particles performing random walks, allowing for heavy-tailed jump distributions. In fact, we set a definition of fractional derivatives yielding the operators which enable us to retrieve the space fractional variant of Fick's law, for enhanced diffusion in disordered media, without passing through any partial differential equation for the space and time evolution of the concentration.
Citation: Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058
References:
[1]

W. Feller, An Introduction to Probability Theory and Its Applications,, Vol. II. Second edition John Wiley and sons, (1971).   Google Scholar

[2]

R. Gorenflo and F. Mainardi, Random Walk models for space-fractional diffusion processes,, Fractional Calculus and Applied Analysis, 1 (1998), 167.   Google Scholar

[3]

N. Heymans, Fractional calculus description of non-linear viscoelastic behaviour of polymers,, in Non-linear Dynamics, 38 (2004), 221.  doi: 10.1007/s11071-004-3757-5.  Google Scholar

[4]

N. Krepysheva, Transport anormal de traceurs passifs en milieux poreux hétérogènes: équations fractionnaires, simulation numérique et conditions aux limites,, Ph.D thesis, (2005).   Google Scholar

[5]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North-Holland Mathematical Studies 204, (2006).   Google Scholar

[6]

F. Mainardi, Fractional calculus: Some basic problems in countinum and statistical mechanics,, in Fractals and Fractional Calculus in Continuum Mechanics, 378 (1997), 291.  doi: 10.1007/978-3-7091-2664-6_7.  Google Scholar

[7]

R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics,, in J. Phys. A, 37 (2004), 161.  doi: 10.1088/0305-4470/37/31/R01.  Google Scholar

[8]

M. C. Néel, A. Abdennadher and M. joelson, Fractional Fick's law: The direct way,, in Journal of Physics A: Mathematical and Theoretical, 40 (2007), 8299.   Google Scholar

[9]

B. Rubin, Fractional Integrals and Potentials,, Longman Green, (1996).   Google Scholar

[10]

S. G. Samko, Hypersingular integrals and differences of fractional order,, in Trudy Mat. Inst. Steklov, 192 (1990), 164.   Google Scholar

[11]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives,, Gorden and Breach, (1993).   Google Scholar

show all references

References:
[1]

W. Feller, An Introduction to Probability Theory and Its Applications,, Vol. II. Second edition John Wiley and sons, (1971).   Google Scholar

[2]

R. Gorenflo and F. Mainardi, Random Walk models for space-fractional diffusion processes,, Fractional Calculus and Applied Analysis, 1 (1998), 167.   Google Scholar

[3]

N. Heymans, Fractional calculus description of non-linear viscoelastic behaviour of polymers,, in Non-linear Dynamics, 38 (2004), 221.  doi: 10.1007/s11071-004-3757-5.  Google Scholar

[4]

N. Krepysheva, Transport anormal de traceurs passifs en milieux poreux hétérogènes: équations fractionnaires, simulation numérique et conditions aux limites,, Ph.D thesis, (2005).   Google Scholar

[5]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North-Holland Mathematical Studies 204, (2006).   Google Scholar

[6]

F. Mainardi, Fractional calculus: Some basic problems in countinum and statistical mechanics,, in Fractals and Fractional Calculus in Continuum Mechanics, 378 (1997), 291.  doi: 10.1007/978-3-7091-2664-6_7.  Google Scholar

[7]

R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics,, in J. Phys. A, 37 (2004), 161.  doi: 10.1088/0305-4470/37/31/R01.  Google Scholar

[8]

M. C. Néel, A. Abdennadher and M. joelson, Fractional Fick's law: The direct way,, in Journal of Physics A: Mathematical and Theoretical, 40 (2007), 8299.   Google Scholar

[9]

B. Rubin, Fractional Integrals and Potentials,, Longman Green, (1996).   Google Scholar

[10]

S. G. Samko, Hypersingular integrals and differences of fractional order,, in Trudy Mat. Inst. Steklov, 192 (1990), 164.   Google Scholar

[11]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives,, Gorden and Breach, (1993).   Google Scholar

[1]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[2]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[3]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[4]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[5]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[6]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[8]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[9]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[10]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[11]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[12]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[13]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[14]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[17]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[18]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[19]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[20]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (152)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]