\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The global attractor of the 2d Boussinesq equations with fractional Laplacian in subcritical case

Abstract / Introduction Related Papers Cited by
  • We prove global well-posedness of strong solutions and existence of the global attractor for the 2D Boussinesq system in a periodic channel with fractional Laplacian in subcritical case. The analysis reveals a relation between the Laplacian exponent and the regularity of the spaces of velocity and temperature.
    Mathematics Subject Classification: Primary: 35Q86, 35R11; Secondary: 34D45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 1992.

    [2]

    A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528.doi: 10.1007/s00220-004-1055-1.

    [3]

    J. R. Cannon and E. DiBenedetto, The initial value problem for the Boussinesq equations with data in $L^p$, Approximation methods for Navier-Stokes problems Lecture Notes in Math., 771 (1980), 129-144.

    [4]

    D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.doi: 10.1016/j.aim.2005.05.001.

    [5]

    P. Constantin, M. Lewicka and L. Ryzhik, Travelling waves in two-dimensional reactive Boussinesq systems with no-slip boundary conditions, Nonlinearity, 19 (2006), 2605-2615.doi: 10.1088/0951-7715/19/11/006.

    [6]

    D. Chae and H.-S. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 935-946.doi: 10.1017/S0308210500026810.

    [7]

    R. Danchin and M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data, Comm. Math. Phys., 290 (2009), 1-14.doi: 10.1007/s00220-009-0821-5.

    [8]

    W. E and C.-W. Shu, Small-scale structures in Boussinesq convection, Phys. Fluids, 6 (1994), 49-58.doi: 10.1063/1.868044.

    [9]

    C. Foias, O. Manley and R. Temam, Attractors for the Bénard problem: Existence and physical bounds on their fractal dimension, Nonlinear Anal., 11 (1987), 939-967.doi: 10.1016/0362-546X(87)90061-7.

    [10]

    C. Foias and G. Prodi, Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34.

    [11]

    S. Gatti, V. Pata and S. Zelik, A gronwall-type lemma with parameter and dissipative estimates for PDEs, Nonlinear Anal., 70 (2009), 2337-2343.doi: 10.1016/j.na.2008.03.015.

    [12]

    B. Hasselblatt and A. Katok, Handbook of Dynamical Systems. Vol. 1B., Elsevier B. V., Amsterdam, 2006.

    [13]

    T. Hmidi and S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differential Equations, 12 (2007), 461-480.

    [14]

    _______, On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J., 58 (2009), 1591-1618.doi: 10.1512/iumj.2009.58.3590.

    [15]

    T. Hmidi, S. Keraani and F. Rousset, Global well-posedness for Euler-Boussinesq system with critical dissipation, Comm. Partial Differential Equations, 36 (2011), 420-445.doi: 10.1080/03605302.2010.518657.

    [16]

    W. Hu, I. Kukavica and M. Ziane, On the regularity for the Boussinesq equations in a bounded domain, J. Math. Phys., 54 (2013), 081507, 10 pp.doi: 10.1063/1.4817595.

    [17]

    T. Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12.

    [18]

    A. Huang, The global well-posedness and global attractor for the solutions to the 2D Boussinesq system with variable viscosity and thermal diffusivity, Nonlinear Anal., 113 (2015), 401-429.doi: 10.1016/j.na.2014.10.030.

    [19]

    _______, The 2d Euler-Boussinesq equations in planar polygonal domains with Yudovich's type data, Commun. Math. Stat., 2 (2014), 369-391.doi: 10.1007/s40304-015-0045-2.

    [20]

    Q. Jiu, C. Miao, J. Wu and Z. Zhang, The two-dimensional incompressible Boussinesq equations with general critical dissipation, SIAM J. Math. Anal., 46 (2014), 3426-3454.doi: 10.1137/140958256.

    [21]

    N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Comm. Math. Phys., 255 (2005), 161-181.doi: 10.1007/s00220-004-1256-7.

    [22]

    T. Kato and G. Ponce, Commutator estimates and the euler and navier-stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.doi: 10.1002/cpa.3160410704.

    [23]

    J. P. Kelliher, R. Temam and X. Wang, Boundary layer associated with the Darcy-Brinkman-Boussinesq model for convection in porous media, Phys. D, 240 (2011), 619-628.doi: 10.1016/j.physd.2010.11.012.

    [24]

    O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1991. (92k:58040)doi: 10.1017/CBO9780511569418.

    [25]

    S. A. Lorca and J. L. Boldrini, Stationary solutions for generalized Boussinesq models, J. Differential Equations, 124 (1996), 389-406.doi: 10.1006/jdeq.1996.0016.

    [26]

    _______, The initial value problem for a generalized boussinesq model, Nonlinear Anal., 36 (1999), 457-480.doi: 10.1016/S0362-546X(97)00635-4.

    [27]

    J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. III, Springer-Verlag, New York-Heidelberg, 1972.

    [28]

    H. Li, R. Pan and W. Zhang, Initial boundary value problem for 2D Boussinesq equations with temperature-dependent heat diffusion, J. Hyperbolic Differ. Equ., 12 (2015), 469-488.doi: 10.1142/S0219891615500137.

    [29]

    M.-J. Lai, R. Pan and K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations, Arch. Ration. Mech. Anal., 199 (2011), 739-760.doi: 10.1007/s00205-010-0357-z.

    [30]

    A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, in Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002.

    [31]

    A. Miranville and M. Ziane, On the dimension of the attractor for the Bénard problem with free surfaces, Russian J. Math. Phys., 5 (1997), 489-502.

    [32]

    V. Pata, Uniform estimates of gronwall type, J. Math. Anal. Appl., 373 (2011), 264-270.doi: 10.1016/j.jmaa.2010.07.006.

    [33]

    J. Pedlosky, Geophysical Fluid Dynamics, Springer Verlag, Berlin, 1987.

    [34]

    A. Stefanov and J. Wu, A gloval regularity result for the 2D Boussinesq equations with critical dissipation, preprint, arXiv:1411.1362v1.

    [35]

    A. Sun and Z. Zhang, Global regularity for the initial-boundary value problem of the 2-d Boussinesq system with variable viscosity and thermal diffusivity, J. Differential Equations, 255 (2013), 1069-1085.doi: 10.1016/j.jde.2013.04.032.

    [36]

    R. Temam, Navier-Stokes Equations, $3^{rd}$ edition, North-Holland Publishing Co., Amsterdam, 1984.

    [37]

    ________, Infinite-dimensional Dynamical Systems in Mechanics and Physics, $2^{nd}$ edition, Springer-Verlag, New York, 1988.doi: 10.1007/978-1-4612-0645-3.

    [38]

    X. Wang, A note on long time behavior of solutions to the Boussinesq system at large Prandtl number, Nonlinear partial differential equations and related analysis, 371 (2005), 315-323.doi: 10.1090/conm/371/06862.

    [39]

    ________, Asymptotic behavior of the global attractors to the Boussinesq system for Rayleigh-Bénard convection at large Prandtl number, Comm. Pure Appl. Math., 60 (2007), 1293-1318.doi: 10.1002/cpa.20170.

    [40]

    J. Wu, The quasi-geostrophic equation and its two regularizations, Comm. Partial Differential Equations, 27 (2002), 1161-1181.doi: 10.1081/PDE-120004898.

    [41]

    G. Wu and L. Xue, Global well-posedness for the 2D inviscid Bénard system with fractional diffusivity and Yudovich's type data, J. Differential Equations, 253 (2012), 100-125.doi: 10.1016/j.jde.2012.02.025.

    [42]

    X. Xu and L. Xue, Yudovich type solution for the 2D inviscid Boussinesq system with critical and supercritical dissipation, J. Differential Equations, 256 (2014), 3179-3207.doi: 10.1016/j.jde.2014.01.038.

    [43]

    W. Yang, Q. Jiu and J. Wu, Global well-posedness for a class of 2D Boussinesq systems with fractional dissipation, J. Differential Equations, 257 (2014), 4188-4213.doi: 10.1016/j.jde.2014.08.006.

    [44]

    K. Zhao, 2D inviscid heat conductive Boussinesq equations on a bounded domain, Michigan Math. J., 59 (2010), 329-352.doi: 10.1307/mmj/1281531460.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(186) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return