Citation: |
[1] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 1992. |
[2] |
A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528.doi: 10.1007/s00220-004-1055-1. |
[3] |
J. R. Cannon and E. DiBenedetto, The initial value problem for the Boussinesq equations with data in $L^p$, Approximation methods for Navier-Stokes problems Lecture Notes in Math., 771 (1980), 129-144. |
[4] |
D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.doi: 10.1016/j.aim.2005.05.001. |
[5] |
P. Constantin, M. Lewicka and L. Ryzhik, Travelling waves in two-dimensional reactive Boussinesq systems with no-slip boundary conditions, Nonlinearity, 19 (2006), 2605-2615.doi: 10.1088/0951-7715/19/11/006. |
[6] |
D. Chae and H.-S. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 935-946.doi: 10.1017/S0308210500026810. |
[7] |
R. Danchin and M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data, Comm. Math. Phys., 290 (2009), 1-14.doi: 10.1007/s00220-009-0821-5. |
[8] |
W. E and C.-W. Shu, Small-scale structures in Boussinesq convection, Phys. Fluids, 6 (1994), 49-58.doi: 10.1063/1.868044. |
[9] |
C. Foias, O. Manley and R. Temam, Attractors for the Bénard problem: Existence and physical bounds on their fractal dimension, Nonlinear Anal., 11 (1987), 939-967.doi: 10.1016/0362-546X(87)90061-7. |
[10] |
C. Foias and G. Prodi, Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34. |
[11] |
S. Gatti, V. Pata and S. Zelik, A gronwall-type lemma with parameter and dissipative estimates for PDEs, Nonlinear Anal., 70 (2009), 2337-2343.doi: 10.1016/j.na.2008.03.015. |
[12] |
B. Hasselblatt and A. Katok, Handbook of Dynamical Systems. Vol. 1B., Elsevier B. V., Amsterdam, 2006. |
[13] |
T. Hmidi and S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differential Equations, 12 (2007), 461-480. |
[14] |
_______, On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J., 58 (2009), 1591-1618.doi: 10.1512/iumj.2009.58.3590. |
[15] |
T. Hmidi, S. Keraani and F. Rousset, Global well-posedness for Euler-Boussinesq system with critical dissipation, Comm. Partial Differential Equations, 36 (2011), 420-445.doi: 10.1080/03605302.2010.518657. |
[16] |
W. Hu, I. Kukavica and M. Ziane, On the regularity for the Boussinesq equations in a bounded domain, J. Math. Phys., 54 (2013), 081507, 10 pp.doi: 10.1063/1.4817595. |
[17] |
T. Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12. |
[18] |
A. Huang, The global well-posedness and global attractor for the solutions to the 2D Boussinesq system with variable viscosity and thermal diffusivity, Nonlinear Anal., 113 (2015), 401-429.doi: 10.1016/j.na.2014.10.030. |
[19] |
_______, The 2d Euler-Boussinesq equations in planar polygonal domains with Yudovich's type data, Commun. Math. Stat., 2 (2014), 369-391.doi: 10.1007/s40304-015-0045-2. |
[20] |
Q. Jiu, C. Miao, J. Wu and Z. Zhang, The two-dimensional incompressible Boussinesq equations with general critical dissipation, SIAM J. Math. Anal., 46 (2014), 3426-3454.doi: 10.1137/140958256. |
[21] |
N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Comm. Math. Phys., 255 (2005), 161-181.doi: 10.1007/s00220-004-1256-7. |
[22] |
T. Kato and G. Ponce, Commutator estimates and the euler and navier-stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.doi: 10.1002/cpa.3160410704. |
[23] |
J. P. Kelliher, R. Temam and X. Wang, Boundary layer associated with the Darcy-Brinkman-Boussinesq model for convection in porous media, Phys. D, 240 (2011), 619-628.doi: 10.1016/j.physd.2010.11.012. |
[24] |
O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1991. (92k:58040)doi: 10.1017/CBO9780511569418. |
[25] |
S. A. Lorca and J. L. Boldrini, Stationary solutions for generalized Boussinesq models, J. Differential Equations, 124 (1996), 389-406.doi: 10.1006/jdeq.1996.0016. |
[26] |
_______, The initial value problem for a generalized boussinesq model, Nonlinear Anal., 36 (1999), 457-480.doi: 10.1016/S0362-546X(97)00635-4. |
[27] |
J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. III, Springer-Verlag, New York-Heidelberg, 1972. |
[28] |
H. Li, R. Pan and W. Zhang, Initial boundary value problem for 2D Boussinesq equations with temperature-dependent heat diffusion, J. Hyperbolic Differ. Equ., 12 (2015), 469-488.doi: 10.1142/S0219891615500137. |
[29] |
M.-J. Lai, R. Pan and K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations, Arch. Ration. Mech. Anal., 199 (2011), 739-760.doi: 10.1007/s00205-010-0357-z. |
[30] |
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, in Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002. |
[31] |
A. Miranville and M. Ziane, On the dimension of the attractor for the Bénard problem with free surfaces, Russian J. Math. Phys., 5 (1997), 489-502. |
[32] |
V. Pata, Uniform estimates of gronwall type, J. Math. Anal. Appl., 373 (2011), 264-270.doi: 10.1016/j.jmaa.2010.07.006. |
[33] |
J. Pedlosky, Geophysical Fluid Dynamics, Springer Verlag, Berlin, 1987. |
[34] |
A. Stefanov and J. Wu, A gloval regularity result for the 2D Boussinesq equations with critical dissipation, preprint, arXiv:1411.1362v1. |
[35] |
A. Sun and Z. Zhang, Global regularity for the initial-boundary value problem of the 2-d Boussinesq system with variable viscosity and thermal diffusivity, J. Differential Equations, 255 (2013), 1069-1085.doi: 10.1016/j.jde.2013.04.032. |
[36] |
R. Temam, Navier-Stokes Equations, $3^{rd}$ edition, North-Holland Publishing Co., Amsterdam, 1984. |
[37] |
________, Infinite-dimensional Dynamical Systems in Mechanics and Physics, $2^{nd}$ edition, Springer-Verlag, New York, 1988.doi: 10.1007/978-1-4612-0645-3. |
[38] |
X. Wang, A note on long time behavior of solutions to the Boussinesq system at large Prandtl number, Nonlinear partial differential equations and related analysis, 371 (2005), 315-323.doi: 10.1090/conm/371/06862. |
[39] |
________, Asymptotic behavior of the global attractors to the Boussinesq system for Rayleigh-Bénard convection at large Prandtl number, Comm. Pure Appl. Math., 60 (2007), 1293-1318.doi: 10.1002/cpa.20170. |
[40] |
J. Wu, The quasi-geostrophic equation and its two regularizations, Comm. Partial Differential Equations, 27 (2002), 1161-1181.doi: 10.1081/PDE-120004898. |
[41] |
G. Wu and L. Xue, Global well-posedness for the 2D inviscid Bénard system with fractional diffusivity and Yudovich's type data, J. Differential Equations, 253 (2012), 100-125.doi: 10.1016/j.jde.2012.02.025. |
[42] |
X. Xu and L. Xue, Yudovich type solution for the 2D inviscid Boussinesq system with critical and supercritical dissipation, J. Differential Equations, 256 (2014), 3179-3207.doi: 10.1016/j.jde.2014.01.038. |
[43] |
W. Yang, Q. Jiu and J. Wu, Global well-posedness for a class of 2D Boussinesq systems with fractional dissipation, J. Differential Equations, 257 (2014), 4188-4213.doi: 10.1016/j.jde.2014.08.006. |
[44] |
K. Zhao, 2D inviscid heat conductive Boussinesq equations on a bounded domain, Michigan Math. J., 59 (2010), 329-352.doi: 10.1307/mmj/1281531460. |