\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Intracellular protein dynamics as a mathematical problem

Abstract Related Papers Cited by
  • The present paper provides a mathematical analysis of the model of intracellular protein dynamics proposed in [14]. The model describes protein and mRNA transport inside a cell and takes into account diffusion in the nucleus and cytoplasm as well as active transport of protein molecules along microtubules in the cytoplasm. The model is a complex system of nonlinear PDEs with appropriate boundary conditions. The model reproduces, at least in numerical simulations, the oscillatory changes in protein concentration observed in the experimental data. To our knowledge this is the first paper that, in the multidimensional case, deals with a rigorous mathematical analysis of a model of intracellular dynamics with active transport on microtubules. In particular, in the present paper, we prove the existence and uniqueness result for the model in arbitrary space dimension. The model may be adapted to other signaling pathways.
    Mathematics Subject Classification: Primary: 35A01, 35K57, 35M13, 35Q92, 92B05, 92C37.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Agrawal, C. Archer and D. V. Schaffer, Computational models of the notch network elucidate mechanisms of context-dependent signaling, PLoS Comput. Biol., 5 (2009), e1000390.doi: 10.1371/journal.pcbi.1000390.

    [2]

    B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Essential Cell Biology, $2^{nd}$ edition, Garland Science/Taylor & Francis Group, 2004.

    [3]

    A. Cangiani and R. Natalini, A spatial model of cellular molecular trafficking including active transport along microtubules, J. Theor. Biol., 267 (2010), 614-625.doi: 10.1016/j.jtbi.2010.08.017.

    [4]

    M. A. J. Chaplain, M. Ptashnyk and M. Sturrock, Hopf bifurcation in a gene regulatory network model: Molecular movement causes oscillations, Math. Models Methods Appl. Sci., 25 (2015), 1179-1215.doi: 10.1142/S021820251550030X.

    [5]

    M. A. J. Chaplain, M. Sturrock and A. J. Terry, Spatio-temporal modelling of intracellular signalling pathways: Transcription factors, negative feedback systems and oscillations, in New Challenges for Cancer Systems Biomedicine (eds. A. d'Onofrio, P. Cerrai and A. Gandolfi), SIMAI Springer Series, (2012), 55-82.doi: 10.1007/978-88-470-2571-4_4.

    [6]

    J. Claus, E. Friedmann, U. Klingmüller, R. Rannacher and T. Szekeres, Spatial aspects in the SMAD signaling pathway, J Math Biol., 67 (2013), 1171-1197.doi: 10.1007/s00285-012-0574-1.

    [7]

    G. Craciun, B. Aguda and A. Friedman, Mathematical analysis of a modular network coordinating the cell cycle and apoptosis, Math Biosci Eng., 2 (2005), 473-485.doi: 10.3934/mbe.2005.2.473.

    [8]

    J. Eliaš and J. Clairambault, Reaction-diffusion systems for spatio-temporal intracellular protein networks: A beginner's guide with two examples, Comput Struct Biotechnol J., 10 (2014), 12-22.

    [9]

    E. Friedmann, R. Neumann and R. Rannacher, Well-posedness of a linear spatio-temporal model of the JAK2/STAT5 signaling pathway, Comm. Math. Analysis, 15 (2013), 76-102.

    [10]

    H. Momiji and N. A. M. Monk, Dissecting the dynamics of the Hes1 genetic oscillator, J. Theor. Biol., 254 (2008), 784-798.doi: 10.1016/j.jtbi.2008.07.013.

    [11]

    N. A. M. Monk, Oscillatory expression of Hes1, p53, and NF-k B driven by transcriptional time delays, Curr. Biol., 13 (2003), 1409-1413.doi: 10.1016/S0960-9822(03)00494-9.

    [12]

    M. Sturrock, A. J. Terry, D. P. Xirodimas, A. M. Thompson and M. A. J. Chaplain, Spatiotemporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways, J. Theor. Biol., 273 (2011), 15-31.doi: 10.1016/j.jtbi.2010.12.016.

    [13]

    M. Sturrock, A. J. Terry, D. P. Xirodimas, A. M. Thompson and M. A. J. Chaplain, Influence of the nuclear membrane, active transport, and cell shape on the Hes1 and p53-Mdm2 pathways: Insights from spatio-temporal modelling, Bull. Math. Biol., 74 (2012), 1531-1579.doi: 10.1007/s11538-012-9725-1.

    [14]

    Z. Szymańska, M. Parisot and M. Lachowicz, Mathematical modeling of the intracellular protein dynamics: The importance of active transport along microtubules, J. Theor. Biol., 363 (2014), 118-128.doi: 10.1016/j.jtbi.2014.07.022.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(163) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return