October  2016, 21(8): 2631-2648. doi: 10.3934/dcdsb.2016065

Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density

1. 

Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

2. 

School of Mathematical Sciences, Xiamen University, Xiamen 361005, China

Received  January 2013 Revised  May 2016 Published  September 2016

In this paper, we first establish the global well-posedness of strong solutions of the simplified Ericksen-Leslie model for nonhomogeneous incompressible nematic liquid crystal flows in dimensions two, if the initial data satisfies some smallness condition. It is worth pointing out that the initial density is allowed to contain vacuum states and the initial velocity can be arbitrarily large. Next, we present a Serrin's type criterion, depending only on $\nabla d$, for the breakdown of local strong solutions. As a byproduct, the global strong solutions with large initial data are obtained, provided the macroscopic molecular orientation of the liquid crystal materials satisfies a natural geometric angle condition (cf. [19]).
Citation: Shengquan Liu, Jianwen Zhang. Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2631-2648. doi: 10.3934/dcdsb.2016065
References:
[1]

R. A. Adams, Sobolev Space,, Academic Press, (1975).   Google Scholar

[2]

H. Brezis and S. Wainger, A note on the limiting cases of Sobolev embedding and convolution inequalities,, Comm. Partial Differential Equations, 5 (1980), 773.  doi: 10.1080/03605308008820154.  Google Scholar

[3]

K. Chang, Heat flow and boudnary value problem for harmonic maps,, Annales de l'Institut Henri Poincaré (C) Analyse non éarire, 6 (1989), 363.   Google Scholar

[4]

K. Chang, W. Ding and R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces,, J. Differ. Geom., 36 (1992), 507.   Google Scholar

[5]

Y. Chen and W. Ding, Blow-up and global existence for heat flows of harmonic maps,, Invent. Math., 99 (1990), 567.  doi: 10.1007/BF01234431.  Google Scholar

[6]

Y. Chen and M. Struwe, Existence and partial regularity for heat flow for harmonic maps,, Math. Z., 201 (1989), 83.  doi: 10.1007/BF01161997.  Google Scholar

[7]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids,, Comm. Partial Differential Equations, 28 (2003), 1183.  doi: 10.1081/PDE-120021191.  Google Scholar

[8]

M. M. Dai, J. Qing and M. Schonbek, Regularity of solutions to the liquid crystals systems in $R^2$ and $R^3$,, Nonlinearity, 25 (2012), 513.  doi: 10.1088/0951-7715/25/2/513.  Google Scholar

[9]

J. L. Ericksen, Conservation laws for liquid crystals,, Trans. Soc. Rheol., 5 (1961), 22.  doi: 10.1122/1.548883.  Google Scholar

[10]

J. L. Ericksen, Hydrostatic theory of liquid crystal,, Arch. Rational Mech. Anal., 9 (1962), 371.   Google Scholar

[11]

G. P. Galdi, An introduction to the Mathematical Theory of Navier-Stokes Equations, Vol. I: Linearized Steady Problems,, Springer Verlag, (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[12]

P. G. de Gennes, The Physics of Liquid Crystals,, $2^{nd}$ edition, (1995).   Google Scholar

[13]

M. C. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two,, Calc. Var. Partial Differential Equations, 40 (2011), 15.  doi: 10.1007/s00526-010-0331-5.  Google Scholar

[14]

T. Huang and C. Y. Wang, Blow up criterion for nematic liquid crystal flows,, Commun. Partial Differntial Equations, 37 (2012), 875.  doi: 10.1080/03605302.2012.659366.  Google Scholar

[15]

X. D. Huang and Y. Wang, Global strong solution with vacuum to the 2D nonhomogeneous incompressible MHD system,, J. Differential Equations, 254 (2013), 511.  doi: 10.1016/j.jde.2012.08.029.  Google Scholar

[16]

F. Jiang and Z. Tan, Global weak soutions to the flow of liquid crystals system,, Math. Methods Appl. Sci., 32 (2009), 2243.  doi: 10.1002/mma.1132.  Google Scholar

[17]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluids,, $2^{nd}$ edition, (1969).   Google Scholar

[18]

O. A. Ladyzhenskaya and T. N. Shilkin, On coercive estimates for solutions of linear systems of hydrodynamic type,, J. Math. Sci., 123 (2004), 4580.  doi: 10.1023/B:JOTH.0000041476.69749.31.  Google Scholar

[19]

Z. Lei, D. Li and X. Y. Zhang, Remarks of global well posedness of liquid crystal flows and heat flows of harmonic maps in two dimensions,, Proc. Amer. Math. Soc., 142 (2014), 3801.  doi: 10.1090/S0002-9939-2014-12057-0.  Google Scholar

[20]

F. M. Leslie, Some contitutive equations for liquid crystals,, Arch Ration. Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[21]

F. M. Leslie, Theory of flow phenomena in liquid crystals,, Advances in Liquid Crystals, 4 (1979), 1.  doi: 10.1016/B978-0-12-025004-2.50008-9.  Google Scholar

[22]

X. L. Li and D. H. Wang, Global solution to the incompressible flow of liquid crystals,, J. Differential Equations, 252 (2012), 745.  doi: 10.1016/j.jde.2011.08.045.  Google Scholar

[23]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789.  doi: 10.1002/cpa.3160420605.  Google Scholar

[24]

F. H. Lin, J. Y. Lin and C. Y. Wang, Liquid crystal flow in two dimensions,, Arch. Rational Mech. Anal., 197 (2010), 297.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[25]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[26]

F. H. Lin and C. Liu, Partial regularity of the nonlinear dissipative system modeling the flow of liquid crystals,, Discrete Contin. Dyn. Syst., 2 (1996), 1.   Google Scholar

[27]

P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 1, Incompressible Models,, Oxford Science Publication, (1996).   Google Scholar

[28]

X. Liu and Z. Zhang, Existence of the flow of liquid crystal system,, Chinese Ann. Math., 30 (2009), 1.   Google Scholar

[29]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations,, Math. Z., 242 (2002), 251.  doi: 10.1007/s002090100332.  Google Scholar

[30]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Springer-Verlag, (1984).  doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[31]

T. Ozawa, On critical cases of Sobolev's inequalities,, J. Funct. Anal., 127 (1995), 259.  doi: 10.1006/jfan.1995.1012.  Google Scholar

[32]

M. Struwe, On the evolution of harmonic maps of Riemannian surfaces,, Comment. Math. Helv., 60 (1985), 558.  doi: 10.1007/BF02567432.  Google Scholar

[33]

M. Wang and W. D. Wang, Global existence of weak solution for the 2-D Ericksen-Leslie system,, Cal. Var. Partial Differ. Equ., 51 (2014), 915.  doi: 10.1007/s00526-013-0700-y.  Google Scholar

[34]

W. Wang, P. W. Zhang and Z. F. Zhang, Well-Posedness of the Ericksen-Leslie System,, Arch. Rational Mech. Anal., 210 (2013), 837.  doi: 10.1007/s00205-013-0659-z.  Google Scholar

[35]

C. Y. Wang, Well-posedeness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data,, Arch. Rational Mech. Anal., 200 (2011), 1.  doi: 10.1007/s00205-010-0343-5.  Google Scholar

[36]

H. Y. Wen and S. J. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals,, Nonlinear Anal. RWA, 12 (2011), 1510.  doi: 10.1016/j.nonrwa.2010.10.010.  Google Scholar

[37]

X. Xu and Z. F. Zhang, Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows,, J. Differential Equations, 252 (2012), 1169.  doi: 10.1016/j.jde.2011.08.028.  Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Space,, Academic Press, (1975).   Google Scholar

[2]

H. Brezis and S. Wainger, A note on the limiting cases of Sobolev embedding and convolution inequalities,, Comm. Partial Differential Equations, 5 (1980), 773.  doi: 10.1080/03605308008820154.  Google Scholar

[3]

K. Chang, Heat flow and boudnary value problem for harmonic maps,, Annales de l'Institut Henri Poincaré (C) Analyse non éarire, 6 (1989), 363.   Google Scholar

[4]

K. Chang, W. Ding and R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces,, J. Differ. Geom., 36 (1992), 507.   Google Scholar

[5]

Y. Chen and W. Ding, Blow-up and global existence for heat flows of harmonic maps,, Invent. Math., 99 (1990), 567.  doi: 10.1007/BF01234431.  Google Scholar

[6]

Y. Chen and M. Struwe, Existence and partial regularity for heat flow for harmonic maps,, Math. Z., 201 (1989), 83.  doi: 10.1007/BF01161997.  Google Scholar

[7]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids,, Comm. Partial Differential Equations, 28 (2003), 1183.  doi: 10.1081/PDE-120021191.  Google Scholar

[8]

M. M. Dai, J. Qing and M. Schonbek, Regularity of solutions to the liquid crystals systems in $R^2$ and $R^3$,, Nonlinearity, 25 (2012), 513.  doi: 10.1088/0951-7715/25/2/513.  Google Scholar

[9]

J. L. Ericksen, Conservation laws for liquid crystals,, Trans. Soc. Rheol., 5 (1961), 22.  doi: 10.1122/1.548883.  Google Scholar

[10]

J. L. Ericksen, Hydrostatic theory of liquid crystal,, Arch. Rational Mech. Anal., 9 (1962), 371.   Google Scholar

[11]

G. P. Galdi, An introduction to the Mathematical Theory of Navier-Stokes Equations, Vol. I: Linearized Steady Problems,, Springer Verlag, (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[12]

P. G. de Gennes, The Physics of Liquid Crystals,, $2^{nd}$ edition, (1995).   Google Scholar

[13]

M. C. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two,, Calc. Var. Partial Differential Equations, 40 (2011), 15.  doi: 10.1007/s00526-010-0331-5.  Google Scholar

[14]

T. Huang and C. Y. Wang, Blow up criterion for nematic liquid crystal flows,, Commun. Partial Differntial Equations, 37 (2012), 875.  doi: 10.1080/03605302.2012.659366.  Google Scholar

[15]

X. D. Huang and Y. Wang, Global strong solution with vacuum to the 2D nonhomogeneous incompressible MHD system,, J. Differential Equations, 254 (2013), 511.  doi: 10.1016/j.jde.2012.08.029.  Google Scholar

[16]

F. Jiang and Z. Tan, Global weak soutions to the flow of liquid crystals system,, Math. Methods Appl. Sci., 32 (2009), 2243.  doi: 10.1002/mma.1132.  Google Scholar

[17]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluids,, $2^{nd}$ edition, (1969).   Google Scholar

[18]

O. A. Ladyzhenskaya and T. N. Shilkin, On coercive estimates for solutions of linear systems of hydrodynamic type,, J. Math. Sci., 123 (2004), 4580.  doi: 10.1023/B:JOTH.0000041476.69749.31.  Google Scholar

[19]

Z. Lei, D. Li and X. Y. Zhang, Remarks of global well posedness of liquid crystal flows and heat flows of harmonic maps in two dimensions,, Proc. Amer. Math. Soc., 142 (2014), 3801.  doi: 10.1090/S0002-9939-2014-12057-0.  Google Scholar

[20]

F. M. Leslie, Some contitutive equations for liquid crystals,, Arch Ration. Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[21]

F. M. Leslie, Theory of flow phenomena in liquid crystals,, Advances in Liquid Crystals, 4 (1979), 1.  doi: 10.1016/B978-0-12-025004-2.50008-9.  Google Scholar

[22]

X. L. Li and D. H. Wang, Global solution to the incompressible flow of liquid crystals,, J. Differential Equations, 252 (2012), 745.  doi: 10.1016/j.jde.2011.08.045.  Google Scholar

[23]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789.  doi: 10.1002/cpa.3160420605.  Google Scholar

[24]

F. H. Lin, J. Y. Lin and C. Y. Wang, Liquid crystal flow in two dimensions,, Arch. Rational Mech. Anal., 197 (2010), 297.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[25]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[26]

F. H. Lin and C. Liu, Partial regularity of the nonlinear dissipative system modeling the flow of liquid crystals,, Discrete Contin. Dyn. Syst., 2 (1996), 1.   Google Scholar

[27]

P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 1, Incompressible Models,, Oxford Science Publication, (1996).   Google Scholar

[28]

X. Liu and Z. Zhang, Existence of the flow of liquid crystal system,, Chinese Ann. Math., 30 (2009), 1.   Google Scholar

[29]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations,, Math. Z., 242 (2002), 251.  doi: 10.1007/s002090100332.  Google Scholar

[30]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Springer-Verlag, (1984).  doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[31]

T. Ozawa, On critical cases of Sobolev's inequalities,, J. Funct. Anal., 127 (1995), 259.  doi: 10.1006/jfan.1995.1012.  Google Scholar

[32]

M. Struwe, On the evolution of harmonic maps of Riemannian surfaces,, Comment. Math. Helv., 60 (1985), 558.  doi: 10.1007/BF02567432.  Google Scholar

[33]

M. Wang and W. D. Wang, Global existence of weak solution for the 2-D Ericksen-Leslie system,, Cal. Var. Partial Differ. Equ., 51 (2014), 915.  doi: 10.1007/s00526-013-0700-y.  Google Scholar

[34]

W. Wang, P. W. Zhang and Z. F. Zhang, Well-Posedness of the Ericksen-Leslie System,, Arch. Rational Mech. Anal., 210 (2013), 837.  doi: 10.1007/s00205-013-0659-z.  Google Scholar

[35]

C. Y. Wang, Well-posedeness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data,, Arch. Rational Mech. Anal., 200 (2011), 1.  doi: 10.1007/s00205-010-0343-5.  Google Scholar

[36]

H. Y. Wen and S. J. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals,, Nonlinear Anal. RWA, 12 (2011), 1510.  doi: 10.1016/j.nonrwa.2010.10.010.  Google Scholar

[37]

X. Xu and Z. F. Zhang, Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows,, J. Differential Equations, 252 (2012), 1169.  doi: 10.1016/j.jde.2011.08.028.  Google Scholar

[1]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[2]

Yingshan Chen, Mei Zhang. A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions. Kinetic & Related Models, 2016, 9 (3) : 429-441. doi: 10.3934/krm.2016001

[3]

Yuming Chu, Yihang Hao, Xiangao Liu. Global weak solutions to a general liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2681-2710. doi: 10.3934/dcds.2013.33.2681

[4]

Huajun Gong, Jinkai Li. Global existence of strong solutions to incompressible MHD. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1553-1561. doi: 10.3934/cpaa.2014.13.1553

[5]

Huajun Gong, Jinkai Li. Global existence of strong solutions to incompressible MHD. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1337-1345. doi: 10.3934/cpaa.2014.13.1337

[6]

Shanshan Guo, Zhong Tan. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinetic & Related Models, 2015, 8 (4) : 691-706. doi: 10.3934/krm.2015.8.691

[7]

Baoquan Yuan. Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2211-2219. doi: 10.3934/dcds.2013.33.2211

[8]

Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591

[9]

Xian-Gao Liu, Jianzhong Min, Kui Wang, Xiaotao Zhang. Serrin's regularity results for the incompressible liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5579-5594. doi: 10.3934/dcds.2016045

[10]

Jishan Fan, Shuxiang Huang, Fucai Li. Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. Kinetic & Related Models, 2017, 10 (4) : 1035-1053. doi: 10.3934/krm.2017041

[11]

Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106

[12]

Yang Liu, Sining Zheng, Huapeng Li, Shengquan Liu. Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3921-3938. doi: 10.3934/dcds.2017165

[13]

Xiaofeng Hou, Limei Zhu. Serrin-type blowup criterion for full compressible Navier-Stokes-Maxwell system with vacuum. Communications on Pure & Applied Analysis, 2016, 15 (1) : 161-183. doi: 10.3934/cpaa.2016.15.161

[14]

Fei Jiang, Song Jiang, Weiwei Wang. Nonlinear Rayleigh-Taylor instability for nonhomogeneous incompressible viscous magnetohydrodynamic flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1853-1898. doi: 10.3934/dcdss.2016076

[15]

Tong Tang, Yongfu Wang. Strong solutions to compressible barotropic viscoelastic flow with vacuum. Kinetic & Related Models, 2015, 8 (4) : 765-775. doi: 10.3934/krm.2015.8.765

[16]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[17]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[18]

Geng Chen, Ping Zhang, Yuxi Zheng. Energy conservative solutions to a nonlinear wave system of nematic liquid crystals. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1445-1468. doi: 10.3934/cpaa.2013.12.1445

[19]

Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757

[20]

Patricia Bauman, Daniel Phillips, Jinhae Park. Existence of solutions to boundary value problems for smectic liquid crystals. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 243-257. doi: 10.3934/dcdss.2015.8.243

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]