October  2016, 21(8): 2663-2685. doi: 10.3934/dcdsb.2016067

A Cahn-Hilliard-Navier-Stokes model with delays

1. 

Department of Mathematics, Florida International University, DM413B, University Park, Miami, Florida 33199, United States

Received  November 2015 Revised  July 2016 Published  September 2016

In this article, we study a coupled Cahn-Hilliard-Navier-Stokes model with delays in a two-dimensional domain. The model consists of the Navier-Stokes equations for the velocity, coupled with an Cahn-Hilliard model for the order (phase) parameter. We prove the existence and uniqueness of the weak and strong solution when the external force contains some delays. We also discuss the asymptotic behavior of the weak solutions and the stability of the stationary solutions.
Citation: T. Tachim Medjo. A Cahn-Hilliard-Navier-Stokes model with delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2663-2685. doi: 10.3934/dcdsb.2016067
References:
[1]

T. Blesgen, A generalization of the Navier-Stokes equation to two-phase flow,, Pysica D (Applied Physics), 32 (1999), 1119.  doi: 10.1088/0022-3727/32/10/307.  Google Scholar

[2]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Rational Mech. Anal., 92 (1986), 205.  doi: 10.1007/BF00254827.  Google Scholar

[3]

T. Caraballo, A. M. Márquez-Durán and J. Real, Pullback and forward attractors for a 3D LANS-$\alpha$ model with delay,, Discrete Contin. Dyn. Syst., 15 (2006), 559.  doi: 10.3934/dcds.2006.15.559.  Google Scholar

[4]

T. Caraballo and J. Real, Navier-Stokes equations with delays,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441.  doi: 10.1098/rspa.2001.0807.  Google Scholar

[5]

T. Caraballo and J. Real, Asymptotic behavior of two-dimensional Navier-Stokes equations with delays,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181.  doi: 10.1098/rspa.2003.1166.  Google Scholar

[6]

T. Caraballo and J. Real, Attractors for 2D Navier-Stokes models with delays,, J. Differential Equations, 205 (2004), 271.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[7]

E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Analysis of a phase-field model for two-phase compressible fluids,, Math. Models Methods Appl. Sci., 20 (2010), 1129.  doi: 10.1142/S0218202510004544.  Google Scholar

[8]

C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401.  doi: 10.1016/j.anihpc.2009.11.013.  Google Scholar

[9]

C. G. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows,, Discrete Contin. Dyn. Syst., 28 (2010), 1.  doi: 10.3934/dcds.2010.28.1.  Google Scholar

[10]

C. G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D,, Chin. Ann. Math. Ser. B, 31 (2010), 655.  doi: 10.1007/s11401-010-0603-6.  Google Scholar

[11]

P.C. Hohenberg and B. I. Halperin, Theory of dynamical critical phenomena,, Rev. Modern Phys., 49 (1977), 435.   Google Scholar

[12]

T. Tachim Medjo, Pullback attractors for a non-autonomous homogeneous two-phase flow model,, J. Diff. Equa., 253 (2012), 1779.  doi: 10.1016/j.jde.2012.06.004.  Google Scholar

[13]

A. Onuki, Phase transition of fluids in shear flow,, J. Phys. Condens. Matter, (2009), 641.  doi: 10.1017/CBO9780511534874.012.  Google Scholar

[14]

T. Taniguchi, The exponential behavior of Navier-Stokes equations with time delay external force,, Discrete Contin. Dyn. Syst., 12 (2005), 997.  doi: 10.3934/dcds.2005.12.997.  Google Scholar

[15]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, volume 68., Appl. Math. Sci., (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

show all references

References:
[1]

T. Blesgen, A generalization of the Navier-Stokes equation to two-phase flow,, Pysica D (Applied Physics), 32 (1999), 1119.  doi: 10.1088/0022-3727/32/10/307.  Google Scholar

[2]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Rational Mech. Anal., 92 (1986), 205.  doi: 10.1007/BF00254827.  Google Scholar

[3]

T. Caraballo, A. M. Márquez-Durán and J. Real, Pullback and forward attractors for a 3D LANS-$\alpha$ model with delay,, Discrete Contin. Dyn. Syst., 15 (2006), 559.  doi: 10.3934/dcds.2006.15.559.  Google Scholar

[4]

T. Caraballo and J. Real, Navier-Stokes equations with delays,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441.  doi: 10.1098/rspa.2001.0807.  Google Scholar

[5]

T. Caraballo and J. Real, Asymptotic behavior of two-dimensional Navier-Stokes equations with delays,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181.  doi: 10.1098/rspa.2003.1166.  Google Scholar

[6]

T. Caraballo and J. Real, Attractors for 2D Navier-Stokes models with delays,, J. Differential Equations, 205 (2004), 271.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[7]

E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Analysis of a phase-field model for two-phase compressible fluids,, Math. Models Methods Appl. Sci., 20 (2010), 1129.  doi: 10.1142/S0218202510004544.  Google Scholar

[8]

C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401.  doi: 10.1016/j.anihpc.2009.11.013.  Google Scholar

[9]

C. G. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows,, Discrete Contin. Dyn. Syst., 28 (2010), 1.  doi: 10.3934/dcds.2010.28.1.  Google Scholar

[10]

C. G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D,, Chin. Ann. Math. Ser. B, 31 (2010), 655.  doi: 10.1007/s11401-010-0603-6.  Google Scholar

[11]

P.C. Hohenberg and B. I. Halperin, Theory of dynamical critical phenomena,, Rev. Modern Phys., 49 (1977), 435.   Google Scholar

[12]

T. Tachim Medjo, Pullback attractors for a non-autonomous homogeneous two-phase flow model,, J. Diff. Equa., 253 (2012), 1779.  doi: 10.1016/j.jde.2012.06.004.  Google Scholar

[13]

A. Onuki, Phase transition of fluids in shear flow,, J. Phys. Condens. Matter, (2009), 641.  doi: 10.1017/CBO9780511534874.012.  Google Scholar

[14]

T. Taniguchi, The exponential behavior of Navier-Stokes equations with time delay external force,, Discrete Contin. Dyn. Syst., 12 (2005), 997.  doi: 10.3934/dcds.2005.12.997.  Google Scholar

[15]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, volume 68., Appl. Math. Sci., (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[1]

Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419

[2]

T. Tachim Medjo. Robust control of a Cahn-Hilliard-Navier-Stokes model. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2075-2101. doi: 10.3934/cpaa.2016028

[3]

T. Tachim Medjo. The exponential behavior of a stochastic Cahn-Hilliard-Navier-Stokes model with multiplicative noise. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1117-1138. doi: 10.3934/cpaa.2019054

[4]

Bo You. Global attractor of the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2283-2298. doi: 10.3934/cpaa.2019103

[5]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

[6]

Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353

[7]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[8]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[9]

Tomás Caraballo, Xiaoying Han. A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1079-1101. doi: 10.3934/dcdss.2015.8.1079

[10]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[11]

Ciprian G. Gal. On the strong-to-strong interaction case for doubly nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 131-167. doi: 10.3934/dcds.2017006

[12]

Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125

[13]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Pullback attractors for globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 779-796. doi: 10.3934/dcds.2011.31.779

[14]

Chuong V. Tran, Theodore G. Shepherd, Han-Ru Cho. Stability of stationary solutions of the forced Navier-Stokes equations on the two-torus. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 483-494. doi: 10.3934/dcdsb.2002.2.483

[15]

Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027

[16]

Jie Liao, Xiao-Ping Wang. Stability of an efficient Navier-Stokes solver with Navier boundary condition. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 153-171. doi: 10.3934/dcdsb.2012.17.153

[17]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[18]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[19]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[20]

Tian Ma, Shouhong Wang. Asymptotic structure for solutions of the Navier--Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 189-204. doi: 10.3934/dcds.2004.11.189

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]