October  2016, 21(8): 2729-2744. doi: 10.3934/dcdsb.2016070

The Euler scheme for state constrained ordinary differential inclusions

1. 

Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, United Kingdom

Received  July 2015 Revised  July 2016 Published  September 2016

We propose and analyze a variation of the Euler scheme for state constrained ordinary differential inclusions under weak assumptions on the right-hand side and the state constraints. Convergence results are given for the space-continuous and the space-discrete versions of this scheme, and a numerical example illustrates in which sense these limits have to be interpreted.
Citation: Janosch Rieger. The Euler scheme for state constrained ordinary differential inclusions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2729-2744. doi: 10.3934/dcdsb.2016070
References:
[1]

J.-P. Aubin and A. Cellina, Differential Inclusions,, Grundlehren der Mathematischen Wissenschaften 264, (1984).  doi: 10.1007/978-3-642-69512-4.  Google Scholar

[2]

J.-P. Aubin and H. Frankowska, Set-valued Analysis,, Systems & Control: Foundations & Applications 2, (1990).   Google Scholar

[3]

R. Baier, M. Gerdts and I. Xausa, Approximation of reachable sets using optimal control algorithms,, Numer. Algebra Control Optim., 3 (2013), 519.  doi: 10.3934/naco.2013.3.519.  Google Scholar

[4]

R. Baier, I. A. Chahma and F. Lempio, Stability and convergence of Euler's method for state-constrained differential inclusions,, SIAM J. Optim., 18 (2007), 1004.  doi: 10.1137/060661867.  Google Scholar

[5]

P. Bettiol, A. Bressan and R. Vinter, On trajectories satisfying a state constraint: $W^{1,1}$ estimates and counterexamples,, SIAM J. Control Optim., 48 (2010), 4664.  doi: 10.1137/090769788.  Google Scholar

[6]

P. Bettiol, H. Frankowska and R. Vinter, $L^\infty$ estimates on trajectories confined to a closed subset,, J. Differential Equations, 252 (2012), 1912.  doi: 10.1016/j.jde.2011.09.007.  Google Scholar

[7]

W.-J. Beyn and J. Rieger, Numerical fixed grid methods for differential inclusions,, Computing, 81 (2007), 91.  doi: 10.1007/s00607-007-0240-4.  Google Scholar

[8]

W.-J. Beyn and J. Rieger, The implicit Euler scheme for one-sided Lipschitz differential inclusions,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 409.  doi: 10.3934/dcdsb.2010.14.409.  Google Scholar

[9]

T. Donchev and E. Farkhi, Stability and Euler approximation of one-sided Lipschitz differential inclusions,, SIAM J. Control Optim., 36 (1998), 780.  doi: 10.1137/S0363012995293694.  Google Scholar

[10]

A. Dontchev and F. Lempio, Difference methods for differential inclusions: A survey,, SIAM Rev., 34 (1992), 263.  doi: 10.1137/1034050.  Google Scholar

[11]

M. Gerdts, R. Henrion, D. Hömberg and C. Landry, Path planning and collision avoidance for robots,, Numer. Algebra Control Optim., 2 (2012), 437.  doi: 10.3934/naco.2012.2.437.  Google Scholar

[12]

M. Gerdts and I. Xausa, Avoidance trajectories using reachable sets and parametric sensitivity analysis., System modeling and optimization, (2013), 491.  doi: 10.1007/978-3-642-36062-6_49.  Google Scholar

[13]

G. Grammel, Towards fully discretized differential inclusions,, Set-Valued Anal., 11 (2003), 1.  doi: 10.1023/A:1021981217050.  Google Scholar

[14]

C. Landry, M. Gerdts, R. Henrion and D. Hömberg, Path-planning with collision avoidance in automotive industry., System modeling and optimization, (2013), 102.  doi: 10.1007/978-3-642-36062-6_11.  Google Scholar

[15]

F. Lempio and V. Veliov, Discrete approximations of differential inclusions,, Bayreuth. Math. Schr., 54 (1998), 149.   Google Scholar

[16]

J. Rieger, Semi-implicit Euler schemes for ordinary differential inclusions,, SIAM J. Numer. Anal., 52 (2014), 895.  doi: 10.1137/110842727.  Google Scholar

[17]

J. Rieger, Robust boundary tracking for reachable sets of nonlinear differential inclusions,, Found. Comput. Math., 15 (2015), 1129.  doi: 10.1007/s10208-014-9218-8.  Google Scholar

[18]

M. Sandberg, Convergence of the forward Euler method for nonconvex differential inclusions,, SIAM J. Numer. Anal., 47 (2008), 308.  doi: 10.1137/070686093.  Google Scholar

[19]

D. Szolnoki, Set oriented methods for computing reachable sets and control sets,, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 361.  doi: 10.3934/dcdsb.2003.3.361.  Google Scholar

[20]

V. Veliov, Second order discrete approximations to strongly convex differential inclusions,, Systems Control Lett., 13 (1989), 263.  doi: 10.1016/0167-6911(89)90073-X.  Google Scholar

[21]

J. Warga, Optimal Control of Differential and Functional Equations,, Academic Press, (1972).   Google Scholar

show all references

References:
[1]

J.-P. Aubin and A. Cellina, Differential Inclusions,, Grundlehren der Mathematischen Wissenschaften 264, (1984).  doi: 10.1007/978-3-642-69512-4.  Google Scholar

[2]

J.-P. Aubin and H. Frankowska, Set-valued Analysis,, Systems & Control: Foundations & Applications 2, (1990).   Google Scholar

[3]

R. Baier, M. Gerdts and I. Xausa, Approximation of reachable sets using optimal control algorithms,, Numer. Algebra Control Optim., 3 (2013), 519.  doi: 10.3934/naco.2013.3.519.  Google Scholar

[4]

R. Baier, I. A. Chahma and F. Lempio, Stability and convergence of Euler's method for state-constrained differential inclusions,, SIAM J. Optim., 18 (2007), 1004.  doi: 10.1137/060661867.  Google Scholar

[5]

P. Bettiol, A. Bressan and R. Vinter, On trajectories satisfying a state constraint: $W^{1,1}$ estimates and counterexamples,, SIAM J. Control Optim., 48 (2010), 4664.  doi: 10.1137/090769788.  Google Scholar

[6]

P. Bettiol, H. Frankowska and R. Vinter, $L^\infty$ estimates on trajectories confined to a closed subset,, J. Differential Equations, 252 (2012), 1912.  doi: 10.1016/j.jde.2011.09.007.  Google Scholar

[7]

W.-J. Beyn and J. Rieger, Numerical fixed grid methods for differential inclusions,, Computing, 81 (2007), 91.  doi: 10.1007/s00607-007-0240-4.  Google Scholar

[8]

W.-J. Beyn and J. Rieger, The implicit Euler scheme for one-sided Lipschitz differential inclusions,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 409.  doi: 10.3934/dcdsb.2010.14.409.  Google Scholar

[9]

T. Donchev and E. Farkhi, Stability and Euler approximation of one-sided Lipschitz differential inclusions,, SIAM J. Control Optim., 36 (1998), 780.  doi: 10.1137/S0363012995293694.  Google Scholar

[10]

A. Dontchev and F. Lempio, Difference methods for differential inclusions: A survey,, SIAM Rev., 34 (1992), 263.  doi: 10.1137/1034050.  Google Scholar

[11]

M. Gerdts, R. Henrion, D. Hömberg and C. Landry, Path planning and collision avoidance for robots,, Numer. Algebra Control Optim., 2 (2012), 437.  doi: 10.3934/naco.2012.2.437.  Google Scholar

[12]

M. Gerdts and I. Xausa, Avoidance trajectories using reachable sets and parametric sensitivity analysis., System modeling and optimization, (2013), 491.  doi: 10.1007/978-3-642-36062-6_49.  Google Scholar

[13]

G. Grammel, Towards fully discretized differential inclusions,, Set-Valued Anal., 11 (2003), 1.  doi: 10.1023/A:1021981217050.  Google Scholar

[14]

C. Landry, M. Gerdts, R. Henrion and D. Hömberg, Path-planning with collision avoidance in automotive industry., System modeling and optimization, (2013), 102.  doi: 10.1007/978-3-642-36062-6_11.  Google Scholar

[15]

F. Lempio and V. Veliov, Discrete approximations of differential inclusions,, Bayreuth. Math. Schr., 54 (1998), 149.   Google Scholar

[16]

J. Rieger, Semi-implicit Euler schemes for ordinary differential inclusions,, SIAM J. Numer. Anal., 52 (2014), 895.  doi: 10.1137/110842727.  Google Scholar

[17]

J. Rieger, Robust boundary tracking for reachable sets of nonlinear differential inclusions,, Found. Comput. Math., 15 (2015), 1129.  doi: 10.1007/s10208-014-9218-8.  Google Scholar

[18]

M. Sandberg, Convergence of the forward Euler method for nonconvex differential inclusions,, SIAM J. Numer. Anal., 47 (2008), 308.  doi: 10.1137/070686093.  Google Scholar

[19]

D. Szolnoki, Set oriented methods for computing reachable sets and control sets,, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 361.  doi: 10.3934/dcdsb.2003.3.361.  Google Scholar

[20]

V. Veliov, Second order discrete approximations to strongly convex differential inclusions,, Systems Control Lett., 13 (1989), 263.  doi: 10.1016/0167-6911(89)90073-X.  Google Scholar

[21]

J. Warga, Optimal Control of Differential and Functional Equations,, Academic Press, (1972).   Google Scholar

[1]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[2]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[3]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[4]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[5]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[6]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[7]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[8]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[9]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[10]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[11]

Stefan Ruschel, Serhiy Yanchuk. The Spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[12]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[13]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[14]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[15]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[16]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[17]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]