October  2016, 21(8): 2729-2744. doi: 10.3934/dcdsb.2016070

The Euler scheme for state constrained ordinary differential inclusions

1. 

Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, United Kingdom

Received  July 2015 Revised  July 2016 Published  September 2016

We propose and analyze a variation of the Euler scheme for state constrained ordinary differential inclusions under weak assumptions on the right-hand side and the state constraints. Convergence results are given for the space-continuous and the space-discrete versions of this scheme, and a numerical example illustrates in which sense these limits have to be interpreted.
Citation: Janosch Rieger. The Euler scheme for state constrained ordinary differential inclusions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2729-2744. doi: 10.3934/dcdsb.2016070
References:
[1]

J.-P. Aubin and A. Cellina, Differential Inclusions,, Grundlehren der Mathematischen Wissenschaften 264, (1984).  doi: 10.1007/978-3-642-69512-4.  Google Scholar

[2]

J.-P. Aubin and H. Frankowska, Set-valued Analysis,, Systems & Control: Foundations & Applications 2, (1990).   Google Scholar

[3]

R. Baier, M. Gerdts and I. Xausa, Approximation of reachable sets using optimal control algorithms,, Numer. Algebra Control Optim., 3 (2013), 519.  doi: 10.3934/naco.2013.3.519.  Google Scholar

[4]

R. Baier, I. A. Chahma and F. Lempio, Stability and convergence of Euler's method for state-constrained differential inclusions,, SIAM J. Optim., 18 (2007), 1004.  doi: 10.1137/060661867.  Google Scholar

[5]

P. Bettiol, A. Bressan and R. Vinter, On trajectories satisfying a state constraint: $W^{1,1}$ estimates and counterexamples,, SIAM J. Control Optim., 48 (2010), 4664.  doi: 10.1137/090769788.  Google Scholar

[6]

P. Bettiol, H. Frankowska and R. Vinter, $L^\infty$ estimates on trajectories confined to a closed subset,, J. Differential Equations, 252 (2012), 1912.  doi: 10.1016/j.jde.2011.09.007.  Google Scholar

[7]

W.-J. Beyn and J. Rieger, Numerical fixed grid methods for differential inclusions,, Computing, 81 (2007), 91.  doi: 10.1007/s00607-007-0240-4.  Google Scholar

[8]

W.-J. Beyn and J. Rieger, The implicit Euler scheme for one-sided Lipschitz differential inclusions,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 409.  doi: 10.3934/dcdsb.2010.14.409.  Google Scholar

[9]

T. Donchev and E. Farkhi, Stability and Euler approximation of one-sided Lipschitz differential inclusions,, SIAM J. Control Optim., 36 (1998), 780.  doi: 10.1137/S0363012995293694.  Google Scholar

[10]

A. Dontchev and F. Lempio, Difference methods for differential inclusions: A survey,, SIAM Rev., 34 (1992), 263.  doi: 10.1137/1034050.  Google Scholar

[11]

M. Gerdts, R. Henrion, D. Hömberg and C. Landry, Path planning and collision avoidance for robots,, Numer. Algebra Control Optim., 2 (2012), 437.  doi: 10.3934/naco.2012.2.437.  Google Scholar

[12]

M. Gerdts and I. Xausa, Avoidance trajectories using reachable sets and parametric sensitivity analysis., System modeling and optimization, (2013), 491.  doi: 10.1007/978-3-642-36062-6_49.  Google Scholar

[13]

G. Grammel, Towards fully discretized differential inclusions,, Set-Valued Anal., 11 (2003), 1.  doi: 10.1023/A:1021981217050.  Google Scholar

[14]

C. Landry, M. Gerdts, R. Henrion and D. Hömberg, Path-planning with collision avoidance in automotive industry., System modeling and optimization, (2013), 102.  doi: 10.1007/978-3-642-36062-6_11.  Google Scholar

[15]

F. Lempio and V. Veliov, Discrete approximations of differential inclusions,, Bayreuth. Math. Schr., 54 (1998), 149.   Google Scholar

[16]

J. Rieger, Semi-implicit Euler schemes for ordinary differential inclusions,, SIAM J. Numer. Anal., 52 (2014), 895.  doi: 10.1137/110842727.  Google Scholar

[17]

J. Rieger, Robust boundary tracking for reachable sets of nonlinear differential inclusions,, Found. Comput. Math., 15 (2015), 1129.  doi: 10.1007/s10208-014-9218-8.  Google Scholar

[18]

M. Sandberg, Convergence of the forward Euler method for nonconvex differential inclusions,, SIAM J. Numer. Anal., 47 (2008), 308.  doi: 10.1137/070686093.  Google Scholar

[19]

D. Szolnoki, Set oriented methods for computing reachable sets and control sets,, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 361.  doi: 10.3934/dcdsb.2003.3.361.  Google Scholar

[20]

V. Veliov, Second order discrete approximations to strongly convex differential inclusions,, Systems Control Lett., 13 (1989), 263.  doi: 10.1016/0167-6911(89)90073-X.  Google Scholar

[21]

J. Warga, Optimal Control of Differential and Functional Equations,, Academic Press, (1972).   Google Scholar

show all references

References:
[1]

J.-P. Aubin and A. Cellina, Differential Inclusions,, Grundlehren der Mathematischen Wissenschaften 264, (1984).  doi: 10.1007/978-3-642-69512-4.  Google Scholar

[2]

J.-P. Aubin and H. Frankowska, Set-valued Analysis,, Systems & Control: Foundations & Applications 2, (1990).   Google Scholar

[3]

R. Baier, M. Gerdts and I. Xausa, Approximation of reachable sets using optimal control algorithms,, Numer. Algebra Control Optim., 3 (2013), 519.  doi: 10.3934/naco.2013.3.519.  Google Scholar

[4]

R. Baier, I. A. Chahma and F. Lempio, Stability and convergence of Euler's method for state-constrained differential inclusions,, SIAM J. Optim., 18 (2007), 1004.  doi: 10.1137/060661867.  Google Scholar

[5]

P. Bettiol, A. Bressan and R. Vinter, On trajectories satisfying a state constraint: $W^{1,1}$ estimates and counterexamples,, SIAM J. Control Optim., 48 (2010), 4664.  doi: 10.1137/090769788.  Google Scholar

[6]

P. Bettiol, H. Frankowska and R. Vinter, $L^\infty$ estimates on trajectories confined to a closed subset,, J. Differential Equations, 252 (2012), 1912.  doi: 10.1016/j.jde.2011.09.007.  Google Scholar

[7]

W.-J. Beyn and J. Rieger, Numerical fixed grid methods for differential inclusions,, Computing, 81 (2007), 91.  doi: 10.1007/s00607-007-0240-4.  Google Scholar

[8]

W.-J. Beyn and J. Rieger, The implicit Euler scheme for one-sided Lipschitz differential inclusions,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 409.  doi: 10.3934/dcdsb.2010.14.409.  Google Scholar

[9]

T. Donchev and E. Farkhi, Stability and Euler approximation of one-sided Lipschitz differential inclusions,, SIAM J. Control Optim., 36 (1998), 780.  doi: 10.1137/S0363012995293694.  Google Scholar

[10]

A. Dontchev and F. Lempio, Difference methods for differential inclusions: A survey,, SIAM Rev., 34 (1992), 263.  doi: 10.1137/1034050.  Google Scholar

[11]

M. Gerdts, R. Henrion, D. Hömberg and C. Landry, Path planning and collision avoidance for robots,, Numer. Algebra Control Optim., 2 (2012), 437.  doi: 10.3934/naco.2012.2.437.  Google Scholar

[12]

M. Gerdts and I. Xausa, Avoidance trajectories using reachable sets and parametric sensitivity analysis., System modeling and optimization, (2013), 491.  doi: 10.1007/978-3-642-36062-6_49.  Google Scholar

[13]

G. Grammel, Towards fully discretized differential inclusions,, Set-Valued Anal., 11 (2003), 1.  doi: 10.1023/A:1021981217050.  Google Scholar

[14]

C. Landry, M. Gerdts, R. Henrion and D. Hömberg, Path-planning with collision avoidance in automotive industry., System modeling and optimization, (2013), 102.  doi: 10.1007/978-3-642-36062-6_11.  Google Scholar

[15]

F. Lempio and V. Veliov, Discrete approximations of differential inclusions,, Bayreuth. Math. Schr., 54 (1998), 149.   Google Scholar

[16]

J. Rieger, Semi-implicit Euler schemes for ordinary differential inclusions,, SIAM J. Numer. Anal., 52 (2014), 895.  doi: 10.1137/110842727.  Google Scholar

[17]

J. Rieger, Robust boundary tracking for reachable sets of nonlinear differential inclusions,, Found. Comput. Math., 15 (2015), 1129.  doi: 10.1007/s10208-014-9218-8.  Google Scholar

[18]

M. Sandberg, Convergence of the forward Euler method for nonconvex differential inclusions,, SIAM J. Numer. Anal., 47 (2008), 308.  doi: 10.1137/070686093.  Google Scholar

[19]

D. Szolnoki, Set oriented methods for computing reachable sets and control sets,, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 361.  doi: 10.3934/dcdsb.2003.3.361.  Google Scholar

[20]

V. Veliov, Second order discrete approximations to strongly convex differential inclusions,, Systems Control Lett., 13 (1989), 263.  doi: 10.1016/0167-6911(89)90073-X.  Google Scholar

[21]

J. Warga, Optimal Control of Differential and Functional Equations,, Academic Press, (1972).   Google Scholar

[1]

Thomas Lorenz. Partial differential inclusions of transport type with state constraints. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1309-1340. doi: 10.3934/dcdsb.2019018

[2]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[3]

Wojciech Kryszewski, Dorota Gabor, Jakub Siemianowski. The Krasnosel'skii formula for parabolic differential inclusions with state constraints. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 295-329. doi: 10.3934/dcdsb.2018021

[4]

Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23

[5]

Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial & Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311

[6]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[7]

Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations & Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017

[8]

Benoît Merlet, Morgan Pierre. Convergence to equilibrium for the backward Euler scheme and applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 685-702. doi: 10.3934/cpaa.2010.9.685

[9]

Jiao-Yan Li, Xiao Hu, Zhong Wan. An integrated bi-objective optimization model and improved genetic algorithm for vehicle routing problems with temporal and spatial constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018200

[10]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Proof of the maximum principle for a problem with state constraints by the v-change of time variable. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2189-2204. doi: 10.3934/dcdsb.2019090

[11]

Elimhan N. Mahmudov. Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019066

[12]

Elimhan N. Mahmudov. Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints. Journal of Industrial & Management Optimization, 2020, 16 (1) : 169-187. doi: 10.3934/jimo.2018145

[13]

Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2393-2416. doi: 10.3934/cpaa.2012.11.2393

[14]

Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173

[15]

Michel H. Geoffroy, Alain Piétrus. A fast iterative scheme for variational inclusions. Conference Publications, 2009, 2009 (Special) : 250-258. doi: 10.3934/proc.2009.2009.250

[16]

Umberto Mosco. Impulsive motion on synchronized spatial temporal grids. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6069-6098. doi: 10.3934/dcds.2017261

[17]

Aniello Raffaele Patrone, Otmar Scherzer. On a spatial-temporal decomposition of optical flow. Inverse Problems & Imaging, 2017, 11 (4) : 761-781. doi: 10.3934/ipi.2017036

[18]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[19]

Mariusz Michta. On solutions to stochastic differential inclusions. Conference Publications, 2003, 2003 (Special) : 618-622. doi: 10.3934/proc.2003.2003.618

[20]

Thomas Lorenz. Mutational inclusions: Differential inclusions in metric spaces. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 629-654. doi: 10.3934/dcdsb.2010.14.629

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]