Citation: |
[1] |
J.-P. Aubin and A. Cellina, Differential Inclusions, Grundlehren der Mathematischen Wissenschaften 264, Springer-Verlag, Berlin, 1984.doi: 10.1007/978-3-642-69512-4. |
[2] |
J.-P. Aubin and H. Frankowska, Set-valued Analysis, Systems & Control: Foundations & Applications 2, Birkhäuser Boston, Inc., Boston, MA, 1990. |
[3] |
R. Baier, M. Gerdts and I. Xausa, Approximation of reachable sets using optimal control algorithms, Numer. Algebra Control Optim., 3 (2013), 519-548.doi: 10.3934/naco.2013.3.519. |
[4] |
R. Baier, I. A. Chahma and F. Lempio, Stability and convergence of Euler's method for state-constrained differential inclusions, SIAM J. Optim., 18 (2007), 1004-1026.doi: 10.1137/060661867. |
[5] |
P. Bettiol, A. Bressan and R. Vinter, On trajectories satisfying a state constraint: $W^{1,1}$ estimates and counterexamples, SIAM J. Control Optim., 48 (2010), 4664-4679.doi: 10.1137/090769788. |
[6] |
P. Bettiol, H. Frankowska and R. Vinter, $L^\infty$ estimates on trajectories confined to a closed subset, J. Differential Equations, 252 (2012), 1912-1933.doi: 10.1016/j.jde.2011.09.007. |
[7] |
W.-J. Beyn and J. Rieger, Numerical fixed grid methods for differential inclusions, Computing, 81 (2007), 91-106.doi: 10.1007/s00607-007-0240-4. |
[8] |
W.-J. Beyn and J. Rieger, The implicit Euler scheme for one-sided Lipschitz differential inclusions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 409-428.doi: 10.3934/dcdsb.2010.14.409. |
[9] |
T. Donchev and E. Farkhi, Stability and Euler approximation of one-sided Lipschitz differential inclusions, SIAM J. Control Optim., 36 (1998), 780-796.doi: 10.1137/S0363012995293694. |
[10] |
A. Dontchev and F. Lempio, Difference methods for differential inclusions: A survey, SIAM Rev., 34 (1992), 263-294.doi: 10.1137/1034050. |
[11] |
M. Gerdts, R. Henrion, D. Hömberg and C. Landry, Path planning and collision avoidance for robots, Numer. Algebra Control Optim., 2 (2012), 437-463.doi: 10.3934/naco.2012.2.437. |
[12] |
M. Gerdts and I. Xausa, Avoidance trajectories using reachable sets and parametric sensitivity analysis. System modeling and optimization, 491-500, IFIP Adv. Inf. Commun. Technol. 391, Springer, Heidelberg, 2013.doi: 10.1007/978-3-642-36062-6_49. |
[13] |
G. Grammel, Towards fully discretized differential inclusions, Set-Valued Anal., 11 (2003), 1-8.doi: 10.1023/A:1021981217050. |
[14] |
C. Landry, M. Gerdts, R. Henrion and D. Hömberg, Path-planning with collision avoidance in automotive industry. System modeling and optimization, 102-111, IFIP Adv. Inf. Commun. Technol. 391, Springer, Heidelberg, 2013.doi: 10.1007/978-3-642-36062-6_11. |
[15] |
F. Lempio and V. Veliov, Discrete approximations of differential inclusions, Bayreuth. Math. Schr., 54 (1998), 149-232. |
[16] |
J. Rieger, Semi-implicit Euler schemes for ordinary differential inclusions, SIAM J. Numer. Anal., 52 (2014), 895-914.doi: 10.1137/110842727. |
[17] |
J. Rieger, Robust boundary tracking for reachable sets of nonlinear differential inclusions, Found. Comput. Math., 15 (2015), 1129-1150.doi: 10.1007/s10208-014-9218-8. |
[18] |
M. Sandberg, Convergence of the forward Euler method for nonconvex differential inclusions, SIAM J. Numer. Anal., 47 (2008), 308-320.doi: 10.1137/070686093. |
[19] |
D. Szolnoki, Set oriented methods for computing reachable sets and control sets, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 361-382.doi: 10.3934/dcdsb.2003.3.361. |
[20] |
V. Veliov, Second order discrete approximations to strongly convex differential inclusions, Systems Control Lett., 13 (1989), 263-269.doi: 10.1016/0167-6911(89)90073-X. |
[21] |
J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972. |