October  2016, 21(8): 2767-2784. doi: 10.3934/dcdsb.2016072

On the Rayleigh-Taylor instability for the compressible non-isentropic inviscid fluids with a free interface

1. 

Department of Mathematics, Shanghai Normal University, Shanghai 200234

2. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240

Received  November 2014 Revised  June 2016 Published  September 2016

In this paper, we study the Rayleigh-Taylor instability phenomena for two compressible, immiscible, inviscid, ideal polytropic fluids. Such two kind of fluids always evolve together with a free interface due to the uniform gravitation. We construct the steady-state solutions for the denser fluid lying above the light one. With an assumption on the steady-state temperature function, we find some growing solutions to the related linearized problem, which in turn demonstrates the linearized problem is ill-posed in the sense of Hadamard. By such an ill-posedness result, we can finally prove the solutions to the original nonlinear problem does not have the property EE(k). Precisely, the $H^3$ solutions to the original nonlinear problem can not Lipschitz continuously depend on their initial data.
Citation: Jing Wang, Feng Xie. On the Rayleigh-Taylor instability for the compressible non-isentropic inviscid fluids with a free interface. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2767-2784. doi: 10.3934/dcdsb.2016072
References:
[1]

R. Duan, F. Jiang and S. Jiang, On the Rayleigh-Taylor instability for incompressible, inviscid magnetohydrodynamic flows,, SIAM J. Appl. Math., 71 (2011), 1990. doi: 10.1137/110830113. Google Scholar

[2]

Y. Guo and I. Tice, Linear Rayleigh-Taylor instability for viscous, compressible fluids,, SIAM J. Math. Anal., 42 (2010), 1688. Google Scholar

[3]

Y. Guo and I. Tice, Compressible, inviscid Rayleigh-Taylor instability,, Indiana Univ. Math. J, 60 (2011), 677. doi: 10.1512/iumj.2011.60.4193. Google Scholar

[4]

H. Hwang and Y. Guo, On the dynamical Rayleigh-Taylor instability,, Arch. Ration. Mech. Anal., 167 (2003), 235. doi: 10.1007/s00205-003-0243-z. Google Scholar

[5]

F. Jiang and S. Jiang, On linear instability and stability of the Rayleigh-Taylor problem in magnetohydrodynamics,, J. Math. Fluid Mech., 17 (2015), 639. doi: 10.1007/s00021-015-0221-x. Google Scholar

[6]

F. Jiang, S. Jiang and G. Ni, Nonlinear instability for nonhomogeneous incompressible viscous fluids,, Sci. China Math., 56 (2013), 665. doi: 10.1007/s11425-013-4587-z. Google Scholar

[7]

J. Jang, I. Tice and Y. Wang, The compressible viscous surface-internal wave problem: Nonlinear Rayleigh-Taylor instability,, Arch. Ration. Mech. Anal., 221 (2016), 215. doi: 10.1007/s00205-015-0960-0. Google Scholar

[8]

H. Kull, Theory of the Rayleigh-Taylor instability,, Phys. Rep., 206 (1991), 197. doi: 10.1016/0370-1573(91)90153-D. Google Scholar

[9]

L. Rayleigh, Analytic solutions of the Rayleigh equations for linear density profiles,, Proc. London Math. Soc., 14 (1883), 170. Google Scholar

[10]

L. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density,, in Scientific Paper, II (1990), 200. Google Scholar

[11]

G. I. Taylor, The instability of liquid surface when accelerated in a direction perpendicular to their planes,, Proc. Roy Soc. London Ser. A, 201 (1950), 192. doi: 10.1098/rspa.1950.0052. Google Scholar

[12]

Y. J. Wang and I. Tice, The viscous surface-internal wave problem: Nonlinear Rayleigh-Taylor instability,, Comm. Partial Differential Equations, 37 (2012), 1967. doi: 10.1080/03605302.2012.699498. Google Scholar

[13]

Y. J. Wang, Critical magnetic number in the magnetohydrodynamic Rayleigh-Taylor instability,, J. Math. Phys., 53 (2012). doi: 10.1063/1.4731479. Google Scholar

[14]

J. Wehausen and E. Laitone, Surface waves,, Handbuch der Physik, 9 (1960), 446. Google Scholar

show all references

References:
[1]

R. Duan, F. Jiang and S. Jiang, On the Rayleigh-Taylor instability for incompressible, inviscid magnetohydrodynamic flows,, SIAM J. Appl. Math., 71 (2011), 1990. doi: 10.1137/110830113. Google Scholar

[2]

Y. Guo and I. Tice, Linear Rayleigh-Taylor instability for viscous, compressible fluids,, SIAM J. Math. Anal., 42 (2010), 1688. Google Scholar

[3]

Y. Guo and I. Tice, Compressible, inviscid Rayleigh-Taylor instability,, Indiana Univ. Math. J, 60 (2011), 677. doi: 10.1512/iumj.2011.60.4193. Google Scholar

[4]

H. Hwang and Y. Guo, On the dynamical Rayleigh-Taylor instability,, Arch. Ration. Mech. Anal., 167 (2003), 235. doi: 10.1007/s00205-003-0243-z. Google Scholar

[5]

F. Jiang and S. Jiang, On linear instability and stability of the Rayleigh-Taylor problem in magnetohydrodynamics,, J. Math. Fluid Mech., 17 (2015), 639. doi: 10.1007/s00021-015-0221-x. Google Scholar

[6]

F. Jiang, S. Jiang and G. Ni, Nonlinear instability for nonhomogeneous incompressible viscous fluids,, Sci. China Math., 56 (2013), 665. doi: 10.1007/s11425-013-4587-z. Google Scholar

[7]

J. Jang, I. Tice and Y. Wang, The compressible viscous surface-internal wave problem: Nonlinear Rayleigh-Taylor instability,, Arch. Ration. Mech. Anal., 221 (2016), 215. doi: 10.1007/s00205-015-0960-0. Google Scholar

[8]

H. Kull, Theory of the Rayleigh-Taylor instability,, Phys. Rep., 206 (1991), 197. doi: 10.1016/0370-1573(91)90153-D. Google Scholar

[9]

L. Rayleigh, Analytic solutions of the Rayleigh equations for linear density profiles,, Proc. London Math. Soc., 14 (1883), 170. Google Scholar

[10]

L. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density,, in Scientific Paper, II (1990), 200. Google Scholar

[11]

G. I. Taylor, The instability of liquid surface when accelerated in a direction perpendicular to their planes,, Proc. Roy Soc. London Ser. A, 201 (1950), 192. doi: 10.1098/rspa.1950.0052. Google Scholar

[12]

Y. J. Wang and I. Tice, The viscous surface-internal wave problem: Nonlinear Rayleigh-Taylor instability,, Comm. Partial Differential Equations, 37 (2012), 1967. doi: 10.1080/03605302.2012.699498. Google Scholar

[13]

Y. J. Wang, Critical magnetic number in the magnetohydrodynamic Rayleigh-Taylor instability,, J. Math. Phys., 53 (2012). doi: 10.1063/1.4731479. Google Scholar

[14]

J. Wehausen and E. Laitone, Surface waves,, Handbuch der Physik, 9 (1960), 446. Google Scholar

[1]

Fei Jiang, Song Jiang, Weiwei Wang. Nonlinear Rayleigh-Taylor instability for nonhomogeneous incompressible viscous magnetohydrodynamic flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1853-1898. doi: 10.3934/dcdss.2016076

[2]

Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions of the non-isentropic compressible fluid models of Korteweg type. Kinetic & Related Models, 2015, 8 (1) : 29-51. doi: 10.3934/krm.2015.8.29

[3]

Zhong Tan, Leilei Tong. Asymptotic behavior of the compressible non-isentropic Navier-Stokes-Maxwell system in $\mathbb{R}^3$. Kinetic & Related Models, 2018, 11 (1) : 191-213. doi: 10.3934/krm.2018010

[4]

Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic & Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615

[5]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[6]

Jiang Xu, Wen-An Yong. Zero-relaxation limit of non-isentropic hydrodynamic models for semiconductors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1319-1332. doi: 10.3934/dcds.2009.25.1319

[7]

Van-Sang Ngo, Stefano Scrobogna. Dispersive effects of weakly compressible and fast rotating inviscid fluids. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 749-789. doi: 10.3934/dcds.2018033

[8]

Xiangdi Huang, Zhouping Xin. On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4477-4493. doi: 10.3934/dcds.2016.36.4477

[9]

Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009

[10]

Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2473-2510. doi: 10.3934/dcds.2019105

[11]

Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025

[12]

Paolo Secchi. An alpha model for compressible fluids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 351-359. doi: 10.3934/dcdss.2010.3.351

[13]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1267-1295. doi: 10.3934/dcdsb.2018151

[14]

Ping Chen, Daoyuan Fang, Ting Zhang. Free boundary problem for compressible flows with density--dependent viscosity coefficients. Communications on Pure & Applied Analysis, 2011, 10 (2) : 459-478. doi: 10.3934/cpaa.2011.10.459

[15]

Adán J. Corcho. Ill-Posedness for the Benney system. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 965-972. doi: 10.3934/dcds.2006.15.965

[16]

Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096

[17]

Zaynab Salloum. Flows of weakly compressible viscoelastic fluids through a regular bounded domain with inflow-outflow boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 625-642. doi: 10.3934/cpaa.2010.9.625

[18]

Juliana Honda Lopes, Gabriela Planas. Well-posedness for a non-isothermal flow of two viscous incompressible fluids. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2455-2477. doi: 10.3934/cpaa.2018117

[19]

Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155

[20]

Mahendra Panthee. On the ill-posedness result for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 253-259. doi: 10.3934/dcds.2011.30.253

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]