Citation: |
[1] |
L. Angheluta, R. Benzi, L. Biferale, I. Procaccia and T. Toschi, Anomalous scaling exponents in nonlinear models of turbulence, Phys. Rev. Lett., 97 (2006), 160601.doi: 10.1103/PhysRevLett.97.160601. |
[2] |
I. Arad, L. Biferale, A. Celani, I. Procaccia and M. Vergassola, Statistical conservation laws in turbulent transport, Phys. Rev. Lett., 87 (2001), 164502.doi: 10.1103/PhysRevLett.87.164502. |
[3] |
R. Benzi, B. Levant, I. Procaccia and E. S. Titi, Statistical properties of nonlinear shell models of turbulence from linear advection model: rigorous results, Nonlinearity, 20 (2007), 1431-1441.doi: 10.1088/0951-7715/20/6/006. |
[4] |
H. Bessaih and B. Ferrario, Inviscid limit of stochastic damped 2D Navier-Stokes equations, Nonlinearity, 27 (2014), 1-15.doi: 10.1088/0951-7715/27/1/1. |
[5] |
H. Bessaih, F. Flandoli and E. S. Titi, Stochastic attractors for shell phenomenological models of turbulence, J. Stat. Phys., 140 (2010), 688-717.doi: 10.1007/s10955-010-0010-0. |
[6] |
P. L. Chow, Stationary solutions of two-dimensional Navier-Stokes equations with random perturbation, Nonlinear stochastic PDEs, (Minneapolis, MN, 1994), IMA Vol. Math. Appl., Springer, 77 (1996), 237-245.doi: 10.1007/978-1-4613-8468-7_13. |
[7] |
Y. Cohen, T. Gilbert and I. Procaccia, Statistically preserved structures in shell models of passive scalar advection, Phys. Rev. E., 65 (2002), 026314.doi: 10.1103/PhysRevE.65.026314. |
[8] |
G. Da Prato, S. Kwapień and J. Zabczyk, Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics, 23 (1987), 1-23.doi: 10.1080/17442508708833480. |
[9] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.doi: 10.1017/CBO9780511666223. |
[10] |
G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series, 229. Cambridge University Press, Cambridge, 1996.doi: 10.1017/CBO9780511662829. |
[11] |
G. Falkovich, K. Gawędzki and M. Vergassola, Particles and fields in fluid turbulence, Rev. Mod. Phys., 73 (2001), 913-975.doi: 10.1103/RevModPhys.73.913. |
[12] |
B. Ferrario, Ergodic results for stochastic Navier-Stokes equation, Stochastics Stochastics Rep., 60 (1997), 271-288.doi: 10.1080/17442509708834110. |
[13] |
B. Ferrario, Stochastic Navier-Stokes equations: Analysis of the noise to have a unique invariant measure, Ann. Mat. Pura Appl., 177 (1999), 331-347.doi: 10.1007/BF02505916. |
[14] |
B. Ferrario, Uniqueness result for the 2D Navier-Stokes equation with additive noise, Stoch. Stoch. Rep., 75 (2003), 435-442.doi: 10.1080/10451120310001644485. |
[15] |
F. Flandoli, Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 403-423.doi: 10.1007/BF01194988. |
[16] |
F. Flandoli and D. Gątarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.doi: 10.1007/BF01192467. |
[17] |
F. Flandoli and B. Maslowski, Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Comm. Math. Phys., 172 (1995), 119-141.doi: 10.1007/BF02104513. |
[18] |
U. Frisch, Turbulence, Cambridge University Press, Cambridge, 1995. |
[19] |
K. Gawędzki and A. Kupiainen, Anomalous Scaling of the Passive Scalar, Phys. Rev. Lett., 75 (1995), 3834-3837. |
[20] |
M. Hairer and J. C. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. of Math., 164 (2006), 993-1032.doi: 10.4007/annals.2006.164.993. |
[21] |
M. Hairer and J. C. Mattingly, A theory of hypo-ellipticity and unique ergodicity for semi-linear stochastic PDEs, Electron. J. Probab., 16 (2011), 658-738.doi: 10.1214/EJP.v16-875. |
[22] |
S. B. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional Turbulence, Cambridge Tracts in Mathematics, 2012.doi: 10.1017/CBO9781139137119. |
[23] |
B. Maslowski, On probability distributions of solutions of semilinear stochastic evolution equations, Stochastics Stochastics Rep., 45 (1993), 17-44.doi: 10.1080/17442509308833854. |
[24] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, 1979. |
[25] |
R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, 41. SIAM, Philadelphia, PA, 1983. |
[26] |
M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Mathematics and its Applications, Springer, 1988.doi: 10.1007/978-94-009-1423-0. |
[27] |
K. Yosida, Functional Analysis, Reprint of the sixth (1980) edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995. |