November  2016, 21(9): 3015-3027. doi: 10.3934/dcdsb.2016085

An integral inequality for the invariant measure of some finite dimensional stochastic differential equation

1. 

Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy

Received  November 2015 Revised  February 2016 Published  October 2016

We prove an integral inequality for the invariant measure $\nu$ of a stochastic differential equation with additive noise in a finite dimensional space $H=\mathbb R^d$. As a consequence, we show that there exists the Fomin derivative of $\nu$ in any direction $z\in H$ and that it is given by $v_z=\langle D\log\rho,z\rangle$, where $\rho$ is the density of $\nu$ with respect to the Lebesgue measure. Moreover, we prove that $v_z\in L^p(H,\nu)$ for any $p\in[1,\infty)$. Also we study some properties of the gradient operator in $L^p(H,\nu)$ and of his adjoint.
Citation: Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085
References:
[1]

V. I. Bogachev, N. V. Krylov and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions,, Comm. Partial Differential Equations, 26 (2001), 2037. doi: 10.1081/PDE-100107815.

[2]

V. I. Bogachev, N. V. Krylov and M. Röckner, Regularity and global bounds for the densities of invariant measures of diffusion processes,, (Russian) Dokl. Akad. Nauk, 405 (2005), 583.

[3]

G. Da Prato and A. Debussche, Ergodicity for the $3D$ stochastic Navier-Stokes equations,, J. Math. Pures Appl., 82 (2003), 877. doi: 10.1016/S0021-7824(03)00025-4.

[4]

G. Da Prato and A. Debussche, $m$-dissipativity of Kolmogorov operators corresponding to Burgers equations with space-time white noise,, Potential Anal, 26 (2007), 31. doi: 10.1007/s11118-006-9021-5.

[5]

G. Da Prato and A. Debussche, Estimate for $P_tD$ for the stochastic Burgers equation,, Ann. Inst. Henri Poincaré Probab. Stat., 52 (2016), 1248. doi: 10.1214/15-AIHP685.

[6]

G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems,, London Mathematical Society Lecture Note Series, (1996). doi: 10.1017/CBO9780511662829.

[7]

G. Da Prato and J. Zabczyk, Differentiability of the Feynman-Kac semigroup and a control application,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 8 (1997), 183.

[8]

K. D. Elworthy, Stochastic flows on Riemannian manifolds,, in Diffusion processes and related problems in analysis, (1992), 33.

[9]

N. V. Krylov, Introduction to the Theory of Diffusion Processes,, Translations of Mathematical Monographs, (1995).

[10]

P. Malliavin, Stochastic Analysis,, Springer-Verlag, (1997). doi: 10.1007/978-3-642-15074-6.

[11]

G. Metafune, D. Pallara and A. Rhandi, Global properties of invariant measures,, J. Funct. Analysis, 223 (2005), 396. doi: 10.1016/j.jfa.2005.02.001.

[12]

D. Nualart, The Malliavin Calculus and Related Topics,, Probability and its Applications, (1995). doi: 10.1007/978-1-4757-2437-0.

show all references

References:
[1]

V. I. Bogachev, N. V. Krylov and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions,, Comm. Partial Differential Equations, 26 (2001), 2037. doi: 10.1081/PDE-100107815.

[2]

V. I. Bogachev, N. V. Krylov and M. Röckner, Regularity and global bounds for the densities of invariant measures of diffusion processes,, (Russian) Dokl. Akad. Nauk, 405 (2005), 583.

[3]

G. Da Prato and A. Debussche, Ergodicity for the $3D$ stochastic Navier-Stokes equations,, J. Math. Pures Appl., 82 (2003), 877. doi: 10.1016/S0021-7824(03)00025-4.

[4]

G. Da Prato and A. Debussche, $m$-dissipativity of Kolmogorov operators corresponding to Burgers equations with space-time white noise,, Potential Anal, 26 (2007), 31. doi: 10.1007/s11118-006-9021-5.

[5]

G. Da Prato and A. Debussche, Estimate for $P_tD$ for the stochastic Burgers equation,, Ann. Inst. Henri Poincaré Probab. Stat., 52 (2016), 1248. doi: 10.1214/15-AIHP685.

[6]

G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems,, London Mathematical Society Lecture Note Series, (1996). doi: 10.1017/CBO9780511662829.

[7]

G. Da Prato and J. Zabczyk, Differentiability of the Feynman-Kac semigroup and a control application,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 8 (1997), 183.

[8]

K. D. Elworthy, Stochastic flows on Riemannian manifolds,, in Diffusion processes and related problems in analysis, (1992), 33.

[9]

N. V. Krylov, Introduction to the Theory of Diffusion Processes,, Translations of Mathematical Monographs, (1995).

[10]

P. Malliavin, Stochastic Analysis,, Springer-Verlag, (1997). doi: 10.1007/978-3-642-15074-6.

[11]

G. Metafune, D. Pallara and A. Rhandi, Global properties of invariant measures,, J. Funct. Analysis, 223 (2005), 396. doi: 10.1016/j.jfa.2005.02.001.

[12]

D. Nualart, The Malliavin Calculus and Related Topics,, Probability and its Applications, (1995). doi: 10.1007/978-1-4757-2437-0.

[1]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[2]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[3]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055

[4]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[5]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579

[6]

Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1

[7]

Hua Liu, Zhaosheng Feng. Begehr-Hile operator and its applications to some differential equations. Communications on Pure & Applied Analysis, 2010, 9 (2) : 387-395. doi: 10.3934/cpaa.2010.9.387

[8]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[9]

Can Huang, Zhimin Zhang. The spectral collocation method for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 667-679. doi: 10.3934/dcdsb.2013.18.667

[10]

Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075

[11]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[12]

Jan A. Van Casteren. On backward stochastic differential equations in infinite dimensions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 803-824. doi: 10.3934/dcdss.2013.6.803

[13]

Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533

[14]

Yaozhong Hu, David Nualart, Xiaobin Sun, Yingchao Xie. Smoothness of density for stochastic differential equations with Markovian switching. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-17. doi: 10.3934/dcdsb.2018307

[15]

A. Alamo, J. M. Sanz-Serna. Word combinatorics for stochastic differential equations: Splitting integrators. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2163-2195. doi: 10.3934/cpaa.2019097

[16]

Pingping Niu, Shuai Lu, Jin Cheng. On periodic parameter identification in stochastic differential equations. Inverse Problems & Imaging, 2019, 13 (3) : 513-543. doi: 10.3934/ipi.2019025

[17]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[18]

Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037

[19]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[20]

Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 723-739. doi: 10.3934/dcdss.2020040

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]