-
Previous Article
Mean field limit with proliferation
- DCDS-B Home
- This Issue
-
Next Article
Weak synchronization for isotropic flows
An integral inequality for the invariant measure of some finite dimensional stochastic differential equation
1. | Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy |
References:
[1] |
V. I. Bogachev, N. V. Krylov and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions,, Comm. Partial Differential Equations, 26 (2001), 2037.
doi: 10.1081/PDE-100107815. |
[2] |
V. I. Bogachev, N. V. Krylov and M. Röckner, Regularity and global bounds for the densities of invariant measures of diffusion processes,, (Russian) Dokl. Akad. Nauk, 405 (2005), 583.
|
[3] |
G. Da Prato and A. Debussche, Ergodicity for the $3D$ stochastic Navier-Stokes equations,, J. Math. Pures Appl., 82 (2003), 877.
doi: 10.1016/S0021-7824(03)00025-4. |
[4] |
G. Da Prato and A. Debussche, $m$-dissipativity of Kolmogorov operators corresponding to Burgers equations with space-time white noise,, Potential Anal, 26 (2007), 31.
doi: 10.1007/s11118-006-9021-5. |
[5] |
G. Da Prato and A. Debussche, Estimate for $P_tD$ for the stochastic Burgers equation,, Ann. Inst. Henri Poincaré Probab. Stat., 52 (2016), 1248.
doi: 10.1214/15-AIHP685. |
[6] |
G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems,, London Mathematical Society Lecture Note Series, (1996).
doi: 10.1017/CBO9780511662829. |
[7] |
G. Da Prato and J. Zabczyk, Differentiability of the Feynman-Kac semigroup and a control application,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 8 (1997), 183.
|
[8] |
K. D. Elworthy, Stochastic flows on Riemannian manifolds,, in Diffusion processes and related problems in analysis, (1992), 33. Google Scholar |
[9] |
N. V. Krylov, Introduction to the Theory of Diffusion Processes,, Translations of Mathematical Monographs, (1995).
|
[10] |
P. Malliavin, Stochastic Analysis,, Springer-Verlag, (1997).
doi: 10.1007/978-3-642-15074-6. |
[11] |
G. Metafune, D. Pallara and A. Rhandi, Global properties of invariant measures,, J. Funct. Analysis, 223 (2005), 396.
doi: 10.1016/j.jfa.2005.02.001. |
[12] |
D. Nualart, The Malliavin Calculus and Related Topics,, Probability and its Applications, (1995).
doi: 10.1007/978-1-4757-2437-0. |
show all references
References:
[1] |
V. I. Bogachev, N. V. Krylov and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions,, Comm. Partial Differential Equations, 26 (2001), 2037.
doi: 10.1081/PDE-100107815. |
[2] |
V. I. Bogachev, N. V. Krylov and M. Röckner, Regularity and global bounds for the densities of invariant measures of diffusion processes,, (Russian) Dokl. Akad. Nauk, 405 (2005), 583.
|
[3] |
G. Da Prato and A. Debussche, Ergodicity for the $3D$ stochastic Navier-Stokes equations,, J. Math. Pures Appl., 82 (2003), 877.
doi: 10.1016/S0021-7824(03)00025-4. |
[4] |
G. Da Prato and A. Debussche, $m$-dissipativity of Kolmogorov operators corresponding to Burgers equations with space-time white noise,, Potential Anal, 26 (2007), 31.
doi: 10.1007/s11118-006-9021-5. |
[5] |
G. Da Prato and A. Debussche, Estimate for $P_tD$ for the stochastic Burgers equation,, Ann. Inst. Henri Poincaré Probab. Stat., 52 (2016), 1248.
doi: 10.1214/15-AIHP685. |
[6] |
G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems,, London Mathematical Society Lecture Note Series, (1996).
doi: 10.1017/CBO9780511662829. |
[7] |
G. Da Prato and J. Zabczyk, Differentiability of the Feynman-Kac semigroup and a control application,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 8 (1997), 183.
|
[8] |
K. D. Elworthy, Stochastic flows on Riemannian manifolds,, in Diffusion processes and related problems in analysis, (1992), 33. Google Scholar |
[9] |
N. V. Krylov, Introduction to the Theory of Diffusion Processes,, Translations of Mathematical Monographs, (1995).
|
[10] |
P. Malliavin, Stochastic Analysis,, Springer-Verlag, (1997).
doi: 10.1007/978-3-642-15074-6. |
[11] |
G. Metafune, D. Pallara and A. Rhandi, Global properties of invariant measures,, J. Funct. Analysis, 223 (2005), 396.
doi: 10.1016/j.jfa.2005.02.001. |
[12] |
D. Nualart, The Malliavin Calculus and Related Topics,, Probability and its Applications, (1995).
doi: 10.1007/978-1-4757-2437-0. |
[1] |
Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203 |
[2] |
Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140 |
[3] |
Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055 |
[4] |
András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43 |
[5] |
Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579 |
[6] |
Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1 |
[7] |
Hua Liu, Zhaosheng Feng. Begehr-Hile operator and its applications to some differential equations. Communications on Pure & Applied Analysis, 2010, 9 (2) : 387-395. doi: 10.3934/cpaa.2010.9.387 |
[8] |
Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227 |
[9] |
Can Huang, Zhimin Zhang. The spectral collocation method for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 667-679. doi: 10.3934/dcdsb.2013.18.667 |
[10] |
Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075 |
[11] |
Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515 |
[12] |
Jan A. Van Casteren. On backward stochastic differential equations in infinite dimensions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 803-824. doi: 10.3934/dcdss.2013.6.803 |
[13] |
Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533 |
[14] |
A. Alamo, J. M. Sanz-Serna. Word combinatorics for stochastic differential equations: Splitting integrators. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2163-2195. doi: 10.3934/cpaa.2019097 |
[15] |
Pingping Niu, Shuai Lu, Jin Cheng. On periodic parameter identification in stochastic differential equations. Inverse Problems & Imaging, 2019, 13 (3) : 513-543. doi: 10.3934/ipi.2019025 |
[16] |
Yaozhong Hu, David Nualart, Xiaobin Sun, Yingchao Xie. Smoothness of density for stochastic differential equations with Markovian switching. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3615-3631. doi: 10.3934/dcdsb.2018307 |
[17] |
Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025 |
[18] |
Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037 |
[19] |
Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031 |
[20] |
Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 723-739. doi: 10.3934/dcdss.2020040 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]