• Previous Article
    Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions
  • DCDS-B Home
  • This Issue
  • Next Article
    An integral inequality for the invariant measure of some finite dimensional stochastic differential equation
November  2016, 21(9): 3029-3052. doi: 10.3934/dcdsb.2016086

Mean field limit with proliferation

1. 

Universita di Pisa, Dipartimento Matematica, Largo Bruno Pontecorvo 5, C.A.P. 56127, Pisa, Italy

2. 

Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, D-10623, Berlin, Germany

Received  October 2015 Revised  March 2016 Published  October 2016

An interacting particle system with long range interaction is considered. Particles, in addition to the interaction, proliferate with a rate depending on the empirical measure. We prove convergence of the empirical measure to the solution of a parabolic equation with non-local nonlinear transport term and proliferation term of logistic type.
Citation: Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3029-3052. doi: 10.3934/dcdsb.2016086
References:
[1]

R. E. Baker and M. J. Simpson, Correcting mean-field approximations for birth-death-movement processes, Phys. Rev. E, 82 (2010), 041905, 12 pp. doi: 10.1103/PhysRevE.82.041905.  Google Scholar

[2]

L. Banas, Z. Brzezniak, M. Neklyudov and A. Prohl, Stochastic Ferromagnetism: Analysis and Numerics, De Gruyter Studies in Mathematics, 58. De Gruyter, Berlin, 2014.  Google Scholar

[3]

M. Bodnar and J. J. L. Velazquez, Derivation of macroscopic equations for individual cell-based models: A formal approach, Math. Meth. Appl. Sci., 28 (2005), 1757-1779. doi: 10.1002/mma.638.  Google Scholar

[4]

Z. Brzezniak, M. Ondrejat and E. Motyl, Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains, preprint,, , ().   Google Scholar

[5]

Z. Brzezniak and E. Motyl, Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D-domains, J. Diff. Eq., 254 (2013), 1627-1685. doi: 10.1016/j.jde.2012.10.009.  Google Scholar

[6]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, preprint, Probab. Theory Relat. Fields, 102 (1995), 367-391. doi: 10.1007/BF01192467.  Google Scholar

[7]

J. L. Lions, Quelques Methodes de Resolution des Problemes aux Limites non Lineaires, Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar

[8]

S. Meleard and V. Bansaye, Some Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior, Stochastics in Biological Systems, 1.4. Springer, Cham; MBI Mathematical Biosciences Institute, Ohio State University, Columbus, OH, 2015, arXiv:1506.04165v1. doi: 10.1007/978-3-319-21711-6.  Google Scholar

[9]

M. Metivier, Quelques problèmes liés aux systèmes infinis de particules et leurs limites, Séminaire de Probabilités, (Strasbourg) 20 (1986), 426-446. doi: 10.1007/BFb0075734.  Google Scholar

[10]

G. Nappo and E. Orlandi, Limit laws for a coagulation model of interacting random particles, Annales de l'I.H.P. section B, 24 (1988), 319-344.  Google Scholar

[11]

K. Oelschläger, A law of large numbers for moderately interacting diffusion processes, Zeitschrift fur Wahrsch. Verwandte Gebiete, 69 (1985), 279-322. doi: 10.1007/BF02450284.  Google Scholar

[12]

K. Oelschläger, On the Derivation of Reaction-Diffusion Equations as Limit Dynamics of Systems of Moderately Interacting Stochastic Processes, Probab. Th. Rel. Fields, 82 (1989), 565-586. doi: 10.1007/BF00341284.  Google Scholar

[13]

R. Philipowski, Interacting diffusions approximating the porous medium equation and propagation of chaos, Stoch. Proc. Appl., 117 (2007), 526-538. doi: 10.1016/j.spa.2006.09.003.  Google Scholar

[14]

A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems, SIAM J. Appl. Math., 61 (2000), 183-212. doi: 10.1137/S0036139998342065.  Google Scholar

[15]

S. He, J. Wang and J. A. Yan, Semimartingale Theory and Stochastic Calculus, Beijing: Science Press, 1992.  Google Scholar

[16]

P. Hinow, P. Gerlee, L. J. McCawley, V. Quaranta, M. Ciobanu, S. Wang, J. M. Graham, B. P. Ayati, J. Claridge, K. R. Swanson, M. Loveless and A. R. A. Anderson, A spatial model of tumor-host interaction: Application of chemoterapy, Math. Biosc. Engin., 6 (2009), 521-546.  Google Scholar

[17]

K. Uchiyama, Pressure in classical Statistical Mechanics and interacting Brownian particles in multi-dimensions, Ann. H. Poincaré, 1 (2000), 1159-1202. doi: 10.1007/PL00001025.  Google Scholar

[18]

S. R. S. Varadhan, Scaling limit for interacting diffusions, Comm. Math. Phys., 135 (1991), 313-353. doi: 10.1007/BF02098046.  Google Scholar

show all references

References:
[1]

R. E. Baker and M. J. Simpson, Correcting mean-field approximations for birth-death-movement processes, Phys. Rev. E, 82 (2010), 041905, 12 pp. doi: 10.1103/PhysRevE.82.041905.  Google Scholar

[2]

L. Banas, Z. Brzezniak, M. Neklyudov and A. Prohl, Stochastic Ferromagnetism: Analysis and Numerics, De Gruyter Studies in Mathematics, 58. De Gruyter, Berlin, 2014.  Google Scholar

[3]

M. Bodnar and J. J. L. Velazquez, Derivation of macroscopic equations for individual cell-based models: A formal approach, Math. Meth. Appl. Sci., 28 (2005), 1757-1779. doi: 10.1002/mma.638.  Google Scholar

[4]

Z. Brzezniak, M. Ondrejat and E. Motyl, Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains, preprint,, , ().   Google Scholar

[5]

Z. Brzezniak and E. Motyl, Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D-domains, J. Diff. Eq., 254 (2013), 1627-1685. doi: 10.1016/j.jde.2012.10.009.  Google Scholar

[6]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, preprint, Probab. Theory Relat. Fields, 102 (1995), 367-391. doi: 10.1007/BF01192467.  Google Scholar

[7]

J. L. Lions, Quelques Methodes de Resolution des Problemes aux Limites non Lineaires, Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar

[8]

S. Meleard and V. Bansaye, Some Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior, Stochastics in Biological Systems, 1.4. Springer, Cham; MBI Mathematical Biosciences Institute, Ohio State University, Columbus, OH, 2015, arXiv:1506.04165v1. doi: 10.1007/978-3-319-21711-6.  Google Scholar

[9]

M. Metivier, Quelques problèmes liés aux systèmes infinis de particules et leurs limites, Séminaire de Probabilités, (Strasbourg) 20 (1986), 426-446. doi: 10.1007/BFb0075734.  Google Scholar

[10]

G. Nappo and E. Orlandi, Limit laws for a coagulation model of interacting random particles, Annales de l'I.H.P. section B, 24 (1988), 319-344.  Google Scholar

[11]

K. Oelschläger, A law of large numbers for moderately interacting diffusion processes, Zeitschrift fur Wahrsch. Verwandte Gebiete, 69 (1985), 279-322. doi: 10.1007/BF02450284.  Google Scholar

[12]

K. Oelschläger, On the Derivation of Reaction-Diffusion Equations as Limit Dynamics of Systems of Moderately Interacting Stochastic Processes, Probab. Th. Rel. Fields, 82 (1989), 565-586. doi: 10.1007/BF00341284.  Google Scholar

[13]

R. Philipowski, Interacting diffusions approximating the porous medium equation and propagation of chaos, Stoch. Proc. Appl., 117 (2007), 526-538. doi: 10.1016/j.spa.2006.09.003.  Google Scholar

[14]

A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems, SIAM J. Appl. Math., 61 (2000), 183-212. doi: 10.1137/S0036139998342065.  Google Scholar

[15]

S. He, J. Wang and J. A. Yan, Semimartingale Theory and Stochastic Calculus, Beijing: Science Press, 1992.  Google Scholar

[16]

P. Hinow, P. Gerlee, L. J. McCawley, V. Quaranta, M. Ciobanu, S. Wang, J. M. Graham, B. P. Ayati, J. Claridge, K. R. Swanson, M. Loveless and A. R. A. Anderson, A spatial model of tumor-host interaction: Application of chemoterapy, Math. Biosc. Engin., 6 (2009), 521-546.  Google Scholar

[17]

K. Uchiyama, Pressure in classical Statistical Mechanics and interacting Brownian particles in multi-dimensions, Ann. H. Poincaré, 1 (2000), 1159-1202. doi: 10.1007/PL00001025.  Google Scholar

[18]

S. R. S. Varadhan, Scaling limit for interacting diffusions, Comm. Math. Phys., 135 (1991), 313-353. doi: 10.1007/BF02098046.  Google Scholar

[1]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, 2021, 14 (3) : 429-468. doi: 10.3934/krm.2021011

[2]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[3]

Dejian Chang, Huili Liu, Jie Xiong. A branching particle system approximation for a class of FBSDEs. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 9-. doi: 10.1186/s41546-016-0007-y

[4]

Charles Bordenave, David R. McDonald, Alexandre Proutière. A particle system in interaction with a rapidly varying environment: Mean field limits and applications. Networks & Heterogeneous Media, 2010, 5 (1) : 31-62. doi: 10.3934/nhm.2010.5.31

[5]

Michael Herty, Mattia Zanella. Performance bounds for the mean-field limit of constrained dynamics. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2023-2043. doi: 10.3934/dcds.2017086

[6]

Vadim Kaushansky, Christoph Reisinger. Simulation of a simple particle system interacting through hitting times. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5481-5502. doi: 10.3934/dcdsb.2019067

[7]

Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115

[8]

Roberto Natalini, Thierry Paul. On the mean field limit for Cucker-Smale models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021164

[9]

Nicolo' Catapano. The rigorous derivation of the Linear Landau equation from a particle system in a weak-coupling limit. Kinetic & Related Models, 2018, 11 (3) : 647-695. doi: 10.3934/krm.2018027

[10]

Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1699-1719. doi: 10.3934/cpaa.2021037

[11]

Carmen G. Higuera-Chan, Héctor Jasso-Fuentes, J. Adolfo Minjárez-Sosa. Control systems of interacting objects modeled as a game against nature under a mean field approach. Journal of Dynamics & Games, 2017, 4 (1) : 59-74. doi: 10.3934/jdg.2017004

[12]

Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311

[13]

Franco Flandoli, Marta Leocata, Cristiano Ricci. The Vlasov-Navier-Stokes equations as a mean field limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3741-3753. doi: 10.3934/dcdsb.2018313

[14]

Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic & Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385

[15]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[16]

Juan Pablo Maldonado López. Discrete time mean field games: The short-stage limit. Journal of Dynamics & Games, 2015, 2 (1) : 89-101. doi: 10.3934/jdg.2015.2.89

[17]

Theresa Lange, Wilhelm Stannat. Mean field limit of Ensemble Square Root filters - discrete and continuous time. Foundations of Data Science, 2021, 3 (3) : 563-588. doi: 10.3934/fods.2021003

[18]

Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711

[19]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and transition point formulas. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 131-155. doi: 10.3934/dcds.2019006

[20]

Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (142)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]